Skip to main content
Log in

Amendment the physicochemical properties of polycarbonate/polybutylene terephthalate blend by gamma-ray irradiation doses

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, blend of polycarbonate (PC)/polybutylene terephthalate thin films was used. This blend belongs to the class of polymeric solid-state nuclear track detectors. Blend samples were exposed to gamma-rays with different doses (55–355 kGy). The compositional changes, the changes of optical properties, the electrical parameters changes and surface morphology in the gamma irradiated samples were studied. Different techniques were used to study improving the physicochemical properties of the irradiated samples, such as Fourier transform infrared spectroscopy, UV–Visible spectroscopy, LCR Meter Bridge and scanning electron microscope, as well as, the roughness testing. Fourier transform infrared measurements exhibit that the degradation in the polymer chain occurs after irradiation with gamma-rays. This means that some functional groups are the most sensible groups to gamma-rays. UV–Visible spectra of the gamma exposed samples exhibited a shift in the absorbance edge toward the region of higher wavelength. This trend reflects a decrease in the band gap energy, which leads to an increase in the electrical conductivity of the samples. The outcomes of dielectric loss and dielectric constant are sensible parameters for whole frequency range to the changes in the structural and optical behaviors as a result to gamma irradiation. Additionally, the surface changes were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abdul-Kader AM, Zaki MF, Radwan RM (2018) Nouf Abuhadi. Influence of gamma irradiation on physical and chemical properties of Makrofol (NTD) material. Radiat Phys Chem 151:12–18

    CAS  Google Scholar 

  2. Resta V, Calcagnile L, Quarta G, Maruccio L, Cola A, Farella I, Giancane G, Valli L (2013) Optical and electrical properties of polycarbonate matrices implanted by high energy Cu ions. Nucl Instrum Methods Phys Res B 312:42–47

    CAS  Google Scholar 

  3. Leontyev AV, Ostertsov EF, Grigoryev VV, Komarov FF (1992) Analytical Methods for investigation of ion implanted polymer layers. Nucl Instrum Methods PhysRes Sect B: Beam Interact Mater At 65:438–441

    Google Scholar 

  4. Zaki MF, Elmaghraby EK, Elbasaty AB (2016) Structural alterations of polycarbonate/PBT by gamma irradiation for high technology applications. J Adhesion Sci Technol 30(4):443–457

    CAS  Google Scholar 

  5. Kalkar AK, Siesler HW, Pfeifer F et al (2003) Molecular orientation and relaxation in poly(butylene terephthalate)/polycarbonate blends. Polymer 44:7251–7264

    CAS  Google Scholar 

  6. Xiao X, Zeng Z, Xue W et al (2013) Isothermal crystallization kinetics and melting behaviors of poly(butylene terephthalate) and poly(butylene terephthalate-co-fumarate) copolymer. Polym Eng Sci 53:482–490

    CAS  Google Scholar 

  7. Hopfe I, Pompe G, Eichhorn KJ (1997) Ordered structures and progressive trans-esterification in PC/PBT melt blends studied by F.T.I.R. spectroscopy combined with D.S.C., and N.M.R. Biomaterials 38:2321–2327

    CAS  Google Scholar 

  8. Al-Madeed M, Madi NK, Al Thani NJ et al (2003) Mechanical and thermal properties of gamma-ray irradiated polyethylene blends. Vacuum 70:227–236

    Google Scholar 

  9. Rosu L, Cascaval CN, Rosu D (2009) Effect of UV radiation on some polymeric networks based on vinyl ester resin and modified lignin. Polym Test 28:296–300

    CAS  Google Scholar 

  10. Żenkiewicz M, Kurcok M (2008) Effects of compatibilizers and electron radiation on thermomechanical properties of composites consisting of five recycled polymers. Polym Test 27:420–427

    Google Scholar 

  11. Hanrahan BD, Angeli SR, Runt J (1985) Miscibility and melting in poly (butylene terephthalate)/poly (bisphenol A-carbonate) blends. Polym Bull 14:399–406

    CAS  Google Scholar 

  12. Zaki MF, Abdul-Kader AM, Nada A, El-Badry BA (2013) Surface modification of Makrofol-DE induced by α-particles. Phil Mag 93(34):4276–4285

    CAS  Google Scholar 

  13. Zaki MF, Elshaer YH, Doaa H, Taha, (2017) The alterations in high density polyethylene properties with gamma irradiation. Radiat Phys Chem 139:90–96

    CAS  Google Scholar 

  14. Zaki MF, Ali AM, Rafat M (2017) Amin Effect of gamma irradiation on optical and chemical properties of cellulose nitrate thin films. J Adhesion Sci Technol 31(12):1314–1327

    CAS  Google Scholar 

  15. Abdul-Kader AM, Turos A, Grambole D, Jagielski J, Piątkowska A, Madi NK et al (2005) Compositional transformations in ion implanted polymers. Nucl Instrum Methods Phys Res B 240:152

    CAS  Google Scholar 

  16. Abdul-Kader AM, El-Badry BA, Zaki MF, Hegazy TM, Hashem HM (2010) Ion beam modification of surface properties of CR-39. Philos Mag 90(19):2543

    CAS  Google Scholar 

  17. Kumar V, Sonkawade RG, Chakarvarti SK, Singh P, Dhaliwal AS (2012a) Carbon ion beam induced modifications of optical, structural and chemical properties in PADC and PET polymers. Radiat Phys Chem 81(6):652

    CAS  Google Scholar 

  18. Kumar V, Sonkawade RG, Chakarvarti SK, Singh P, Dhaliwal AS (2012b) Carbon ion beam induced modifications of optical, structural and chemical properties in PADC and PET polymers. Radiat Phys Chem 81:652–658

    CAS  Google Scholar 

  19. Singh L, Singh R (2004) Swift heavy ion induced modifications in polypropylene. Nucl Instrum Methods Phys Res Sect B 225:478–482

    CAS  Google Scholar 

  20. Singh S, Prasher S (2005) ’The optical, chemical and spectral response of gamma-irradiated Lexan polymeric track recorder. Radiat Meas 40:50–54

    CAS  Google Scholar 

  21. Zaki MF, Ghaly WA, El-Bahkiry HS (2015) Photoluminescence, optical band gap and surface wettability of some polymeric track detectors modified by electron beam. Surf Coat Technol 275:363–368

    CAS  Google Scholar 

  22. Pejova B, Tanusevski A, Grozdanov I (2004) Semiconducting thin films of zinc selenide quantum dots. J Solid State Chem 177:4785

    CAS  Google Scholar 

  23. E. James Mark, “Physical Properties of Polymers Handbook”, 2nd Edition, Springer P 395.

  24. Sakr EM (2008) Effect of microstructural variations developed by heat treatment on the mechanical and electrical properties of (Pb–1· 5 wt-% Sb). Egypt J Solids 31(2):217–229

    Google Scholar 

  25. Fink D, Chung WH, Klett R, Schmoldt A, Cardoso J, Montiel R, Vazquez MH, Wang L, Hosoi F, Omichi H, Goppelt-Langer P (1995) Carbonaceous clusters in irradiated polymers as revealed by UV-Vis spectrometry. Radiat Eff Def Solids 133:193

    CAS  Google Scholar 

  26. Nouh SA, Ibrahim El-Tayeb N, Said AF, Radwan MM, S.A. EL-Fiki, (2007) Structural and optical studies of electron beam-irradiated Makrofol nuclear track detector. Radiat Measurements 42:8–13

    CAS  Google Scholar 

  27. Rizk RAM, Abdul-Kader AM, Ali M, Ali ZI (2008) Influence of ion-beam bombardment on the optical properties of LDPE polymer blends. J Phys D: Appl Phys 41(205304):5

    Google Scholar 

  28. Singh S, Prasher S (2006) A comparison of modifications induced by Li3+ and O6+ ion beam to Makrofol-KG and CR-39 polymeric track detectors. Nucl Instrum Methods Phys Res 244:252–256

    CAS  Google Scholar 

  29. Singh R, Samra SK, Kumar R, Singh L (2008) Proton (3MeV) and copper (120MeV) ion irradiation effects in low-density polyethylene (LDPE). Radiat Phys Chem 77:53–57

    CAS  Google Scholar 

  30. Singh V, Singh T, Chandra A, Bandyopadhyay SK, Sen P, Witte K, Scherer UW, Srivastava A (2006) Swift heavy ion induced modification in PET: Structural and thermal properties. Nucl Instrum Methods Phys Res 244:243–247

    CAS  Google Scholar 

  31. Kalsi PC, Agarwal C (2008) Neutron-irradiation effects on track etching and optical characteristics of CR-39 (DOP) nuclear track detector. J Mater Sci 43:2868–2865

    Google Scholar 

  32. Evelyn ALD, Tla RL, Zimmerman K, Bhat DB, Poker DK, Hensley, (1997) Resolving the electronic and nuclear effects of MeV ions in polymers. Nucl. Instrum. Methods B 127–128:694–697

    Google Scholar 

  33. C Z. Liu, Y.Zhu, Jin, Y. Sun, M. Hou, Z. Wang, X. Chen, C. Zhang, J. Liu, B. Li, Y. Wang (2002) Nucl. Instrum. Methods B 166 and 167: 641.

  34. Farenzena LS, Papaléo RM, Hallén A, de Araújo MA, Livi RP, Sundqvist BUR (1995) Modifications in the chemical bonding and optical absorption of PPS by ion bombardment. Nucl Instrum Methods B 105:134–138

    CAS  Google Scholar 

  35. Picq V, Ramillon JM, Balanzat E (1998) Swift heavy ions on polymers: hydrocarbon gas release. Nucl Instrum Methods B 146:496-503

    CAS  Google Scholar 

  36. Abdel-Salam MH, Nouh SA, Radwan YE, Fouad SS (2011) Structure and mechanical investigation of the effect of proton irradiation in Makrofol DE 7–2 polycarbonate. Mat Chem Phys 127(1–2):305–309

    CAS  Google Scholar 

  37. El-Sayed SM, Arnaouty MB, Fayek SA (2003) Effect of grafting, gamma irradiation and light exposure on optical and morphological properties of grafted low-density polyethylene films. Polym Test 22:17

    Google Scholar 

  38. Zaki MF (2008) Gamma-induced modification on optical band gap of THE BLEND SSNTD. J Phys D 41:175404

    Google Scholar 

  39. Mott NF, Davis EA 1971. Electronic Processes in Non – Crystalline Materials. Clarendon Press, Oxford Univ. pp. 273–300.

  40. Zaki MF, Elmaghraby EK (2012) Photoluminescence of gamma-radiation induced defect on poly allyl diglycol carbonates. J Lumin 132:119–121

    CAS  Google Scholar 

  41. Tauc J (1974) Optical properties of amorphous semiconductors. In: Tauc J (ed) Amorphous and liquid semiconductors. Plenum, New York (NY), pp 159–220

    Google Scholar 

  42. Shekhawat N, Aggarwal S, Sharma A et al (2011) Surface disordering and its correlations with properties in argon implanted THE BLEND polymer. J Appl Phys 109:083513

    Google Scholar 

  43. Robertson J, O’Reilly EP (1987) Electronic and atomic structure of amorphous carbon. Phys Rev B 35:2946

    CAS  Google Scholar 

  44. Saravanan S, Anantharaman MR, Venkatachalam S et al (2008) Studies on the optical band gap and cluster size of the polyaniline thin films irradiated with swift heavy Si ions. Vacuum 82:56–60

    Google Scholar 

  45. Radwan RM (2004) Isot Radiat Res 36(1):11

    Google Scholar 

  46. Rao GR, Monar K, Lee EH, Treglio JR (1994) Metal ion implantation effects on surface properties of polymers. Surf Coat Technol 64:69

    CAS  Google Scholar 

  47. Wang Y, Mohite SS, Bridwell LB, Giedd RE, Sofield CJ (1993) Modification of high temperature and high performance polymers by ion implantation. J Mater Res 8:388

    CAS  Google Scholar 

  48. Gaafar M (2001) Ac-electrical conductivity of poly(propylene) before and after X-ray irradiation. Nucl Instrum Methods B 174(4):507

    CAS  Google Scholar 

  49. Goyal PK, Kumar V, Gupta R, Mahendia S, Anita K, S., (2012) Modification of polycarbonate surface by Ar+ ion implantation for various opto-electronic applications. Vacuum 86:1087

    CAS  Google Scholar 

  50. Popok VN (2012) Ion implantation of polymers: formation of nanoparticulate materials. Rev. Adv. Mater. Sci 30(1):1–26

    CAS  Google Scholar 

  51. Sharma T, Aggarwal S, Sharma A, Kumar S, Mittal VK, Kalsi PC, Manchanda VK (2008) Radiat. Eff Defects Solids 163(2):173–179

    Google Scholar 

  52. Kao KC (2004) Dielectric Phenomena in Solids. Elsevier Academic Press, London

    Google Scholar 

  53. Murray KA, Kennedy JE, McEvoy B, Vrain O, Ryan D, Higginbotham CL (2012) The effects of high energy electron beam irradiation on the thermal and structural properties of low density polyethylene. Radiat Phys Chem 81:962–966

    CAS  Google Scholar 

  54. Suarez JCM, Mano EB (2001) Characterization of degradation on gamma-irradiated recycled polyethylene blends by scanning electron microscopy. Polym Degrad Stab 72:217–221

    CAS  Google Scholar 

  55. Zaki MF (2015) The optical, wettability and hardness properties of polyethylene improved by alpha particle irradiations. Spectrochim Acta Part A Mol Biomol Spectrosc 151:839–847

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Zaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaki, M.F., Radwan, R.M. & Rashad, A.M. Amendment the physicochemical properties of polycarbonate/polybutylene terephthalate blend by gamma-ray irradiation doses. Polym. Bull. 78, 7167–7182 (2021). https://doi.org/10.1007/s00289-020-03474-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03474-z

Keywords

Navigation