Skip to main content
Log in

Recent advances in dye removal from wastewater by membrane technology: a review

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Dye contamination of wastewater has become one of the most critical environmental problems these days. The most critical sources of dyes in wastewater are from industries such as textile factories, food, paper and printing products and vehicles productions. There are various techniques for the removal of dyes from wastewater such as adsorption, oxidation process, photocatalyst, biological decolorization and membrane separation technology. In this paper, the recent advances in the removal of dyes from wastewater by membrane technology as one of the most promising and effective water treatment methods have been reviewed. This review paper covers published articles mostly from 2000 to 2020. It is evident from literature survey articles that nanofiltration (NF) is the most studied type of membrane for the elimination of dyes from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IHS (2017) Chemical economics handbook access comprehensive chemical industry data and analysis

  2. Carneiro PA, Nogueira RFP, Zanoni MVB (2007) Homogeneous photodegradation of C.I. Reactive Blue 4 using a photo-Fenton process under artificial and solar irradiation. Dye Pigment 74:127–132. https://doi.org/10.1016/j.dyepig.2006.01.022

    Article  CAS  Google Scholar 

  3. Drumond Chequer FM, de Oliveira GAR, Anastacio Ferraz ER et al (2013) Textile dyes: dyeing process and environmental impact. Eco-Friendly Text Dye Finish. https://doi.org/10.5772/53659

    Article  Google Scholar 

  4. Gupta Y, Hellgardt K, Wakeman R (2006) Enhanced permeability of polyaniline based nano-membranes for gas separation. J Memb Sci 282:60–70. https://doi.org/10.1016/j.memsci.2006.05.014

    Article  CAS  Google Scholar 

  5. Kajekar AJ, Dodamani BM, Isloor AM et al (2015) Preparation and characterization of novel PSf/PVP/PANI-nanofiber nanocomposite hollow fiber ultrafiltration membranes and their possible applications for hazardous dye rejection. Desalination 365:117–125. https://doi.org/10.1016/j.desal.2015.02.028

    Article  CAS  Google Scholar 

  6. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184. https://doi.org/10.1016/j.cis.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  7. dos Santos AB, Cervantes FJ, van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385. https://doi.org/10.1016/j.biortech.2006.11.013

    Article  CAS  PubMed  Google Scholar 

  8. Islam I, Mehedy ME, Chowdhury S et al (2015) Physicochemical analysis of textile dye effluent and screening the textile dye degrading microbial species. IOSR J Environ Sci Ver II 9:2319–2399. https://doi.org/10.9790/2402-09325155

    Article  Google Scholar 

  9. Lachheb H, Puzenat E, Houas A et al (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B Environ 39:75–90. https://doi.org/10.1016/S0926-3373(02)00078-4

    Article  CAS  Google Scholar 

  10. Augusto G, De OR, Leme DM et al (2018) Chemico-biological interactions A test battery for assessing the ecotoxic e ff ects of textile dyes. Chem Biol Interact 291:171–179. https://doi.org/10.1016/j.cbi.2018.06.026

    Article  CAS  Google Scholar 

  11. Kobylewski S, Jacobson MF (2012) Toxicology of food dyes. Int J Occup Environ Health 18:220–246. https://doi.org/10.1179/1077352512Z.00000000034

    Article  CAS  PubMed  Google Scholar 

  12. Ren S, Liu D, Chen Y et al (2019) Anionic channel membrane encircled by SO3H-polyamide 6 particles for removal of anionic dyes. J Memb Sci 570–571:34–43. https://doi.org/10.1016/j.memsci.2018.10.025

    Article  CAS  Google Scholar 

  13. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047

    Article  CAS  PubMed  Google Scholar 

  14. Zhu MX, Lee L, Wang HH, Wang Z (2007) Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. J Hazard Mater 149:735–741. https://doi.org/10.1016/j.jhazmat.2007.04.037

    Article  CAS  PubMed  Google Scholar 

  15. Ibrahim SM, Badawy AA, Essawy HA (2019) Improvement of dyes removal from aqueous solution by Nanosized cobalt ferrite treated with humic acid during coprecipitation. J Nanostruct Chem 9:281–298. https://doi.org/10.1007/s40097-019-00318-9

    Article  CAS  Google Scholar 

  16. Lau YY, Wong YS, Teng TT et al (2015) Degradation of cationic and anionic dyes in coagulation-flocculation process using bi-functionalized silica hybrid with aluminum-ferric as auxiliary agent. RSC Adv 5:34206–34215. https://doi.org/10.1039/c5ra01346a

    Article  CAS  Google Scholar 

  17. Sadri Moghaddam S, Alavi Moghaddam MR, Arami M (2010) Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology. J Hazard Mater 175:651–657. https://doi.org/10.1016/j.jhazmat.2009.10.058

    Article  CAS  PubMed  Google Scholar 

  18. Javaid R, Qazi UY (2019) Catalytic oxidation process for the degradation of synthetic dyes: an overview. Int J Environ Res Public Health 16:1–27. https://doi.org/10.3390/ijerph16112066

    Article  CAS  Google Scholar 

  19. Zaharia C, Suteu D, Muresan A, et al (2009) Textile wastewater treatment by homogeneous oxidation with hydrogen peroxide. Environ Eng Manag J 8:1359–1369. https://doi.org/https://doi.org/10.30638/eemj.2009.199

  20. Cheng L, Wei M, Huang L et al (2014) Efficient H2O2 oxidation of organic dyes catalyzed by simple copper(II) ions in bicarbonate aqueous solution. Ind Eng Chem Res 53:3478–3485. https://doi.org/10.1021/ie403801f

    Article  CAS  Google Scholar 

  21. Bhatia D, Sharma NR, Singh J, Kanwar RS (2017) Biological methods for textile dye removal from wastewater: a review. Crit Rev Environ Sci Technol 47:1836–1876. https://doi.org/10.1080/10643389.2017.1393263

    Article  CAS  Google Scholar 

  22. Saber M, Mohammad A, Olya E (2016) Investigation of enhanced biological dye removal of colored wastewater in a lab-scale biological activated carbon process. Appl Biol Chem. https://doi.org/10.1007/s13765-016-0177-4

    Article  Google Scholar 

  23. Amini M, Arami M, Mohammad N, Akbari A (2011) Dye removal from colored textile wastewater using acrylic grafted nanomembrane. DES 267:107–113. https://doi.org/10.1016/j.desal.2010.09.014

    Article  CAS  Google Scholar 

  24. Nguyen TA, Juang R (2013) Treatment of waters and wastewaters containing sulfur dyes: a review. Chem Eng J 219:109–117. https://doi.org/10.1016/j.cej.2012.12.102

    Article  CAS  Google Scholar 

  25. Dasgupta J, Sikder J, Chakraborty S et al (2015) Remediation of textile effluents by membrane based treatment techniques: a state of the art review. J Environ Manage 147:55–72. https://doi.org/10.1016/j.jenvman.2014.08.008

    Article  CAS  PubMed  Google Scholar 

  26. Hebbar RS, Isloor AM, Zulhairun AK et al (2017) Efficient treatment of hazardous reactive dye effluents through antifouling polyetherimide hollow fiber membrane embedded with functionalized halloysite nanotubes. J Taiwan Inst Chem Eng 0:1–9. https://doi.org/10.1016/j.jtice.2017.01.022

    Article  CAS  Google Scholar 

  27. Zhan Y, Wan X, He S, et al (2018) Design of durable and efficient poly(arylene ether nitrile)/bioinspired polydopamine coated graphene oxide nanofibrous composite membrane for anionic dyes separation

  28. Srivastava HP, Arthanareeswaran G, Anantharaman N, Starov VM (2011) Performance of modified poly(vinylidene fluoride) membrane for textile wastewater ultrafiltration. Desalination 282:87–94. https://doi.org/10.1016/j.desal.2011.05.054

    Article  CAS  Google Scholar 

  29. Fersi C, Dhahbi M (2008) Treatment of textile plant effluent by ultrafiltration and/or nanofiltration for water reuse. Desalination 222:263–271. https://doi.org/10.1016/j.desal.2007.01.171

    Article  CAS  Google Scholar 

  30. Aouni A, Fersi C, Ben Sik Ali M, Dhahbi M (2009) Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process. J Hazard Mater 168:868–874. https://doi.org/10.1016/j.jhazmat.2009.02.112

    Article  CAS  PubMed  Google Scholar 

  31. Zaghbani N, Hafiane A, Dhahbi M (2009) Removal of Eriochrome Blue Black R from wastewater using micellar-enhanced ultrafiltration. J Hazard Mater 168:1417–1421. https://doi.org/10.1016/j.jhazmat.2009.03.044

    Article  CAS  PubMed  Google Scholar 

  32. Purkait MK, DasGupta S, De S (2004) Resistance in series model for micellar enhanced ultrafiltration of eosin dye. J Colloid Interface Sci 270:496–506. https://doi.org/10.1016/j.jcis.2003.10.030

    Article  CAS  PubMed  Google Scholar 

  33. Tan X, Kyaw NN, Teo WK, Li K (2006) Decolorization of dye-containing aqueous solutions by the polyelectrolyte-enhanced ultrafiltration (PEUF) process using a hollow fiber membrane module. Sep Purif Technol 52:110–116. https://doi.org/10.1016/j.seppur.2006.03.028

    Article  CAS  Google Scholar 

  34. Tan KB, Vakili M, Horri BA et al (2015) Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Sep Purif Technol 150:229–242. https://doi.org/10.1016/j.seppur.2015.07.009

    Article  CAS  Google Scholar 

  35. Juang Y, Nurhayati E, Huang C et al (2013) A hybrid electrochemical advanced oxidation/microfiltration system using BDD/Ti anode for acid yellow 36 dye wastewater treatment. Sep Purif Technol 120:289–295. https://doi.org/10.1016/j.seppur.2013.09.042

    Article  CAS  Google Scholar 

  36. Drioli E (2008) Membranes in Clean Technologies. Theory and Practice. A. B. Koltuniewicz and E. Drioli Copyright. 1:889

  37. Lee JW, Choi SP, Thiruvenkatachari R et al (2006) Submerged microfiltration membrane coupled with alum coagulation/powdered activated carbon adsorption for complete decolorization of reactive dyes. Water Res 40:435–444. https://doi.org/10.1016/j.watres.2005.11.034

    Article  CAS  PubMed  Google Scholar 

  38. Jana S, Purkait MK, Mohanty K (2010) Applied Clay Science Removal of crystal violet by advanced oxidation and microfiltration. Appl Clay Sci 50:337–341. https://doi.org/10.1016/j.clay.2010.08.023

    Article  CAS  Google Scholar 

  39. Shi P, Hu X, Wang Y et al (2018) Separation and purification technology A PEG-tannic acid decorated microfiltration membrane for the fast removal of Rhodamine B from water. Sep Purif Technol 207:443–450. https://doi.org/10.1016/j.seppur.2018.06.075

    Article  CAS  Google Scholar 

  40. Homem NC, de Camargo Lima Beluci N, Amorim S, et al (2019) Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal. Appl Surf Sci 486:499–507. https://doi.org/10.1016/j.apsusc.2019.04.276

    Article  CAS  Google Scholar 

  41. Daraei P, Siavash S, Salehi E et al (2013) Novel thin film composite membrane fabricated by mixed matrix nanoclay/chitosan on PVDF microfiltration support: preparation, characterization and performance in dye removal. J Memb Sci 436:97–108. https://doi.org/10.1016/j.memsci.2013.02.031

    Article  CAS  Google Scholar 

  42. Arthanareeswaran G, Thanikaivelan P, Jaya N et al (2007) Removal of chromium from aqueous solution using cellulose acetate and sulfonated poly(ether ether ketone) blend ultrafiltration membranes. J Hazard Mater 139:44–49. https://doi.org/10.1016/j.jhazmat.2006.06.006

    Article  CAS  PubMed  Google Scholar 

  43. Huang J, Zhang K, Wang K et al (2012) Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J Memb Sci 423–424:362–370. https://doi.org/10.1016/j.memsci.2012.08.029

    Article  CAS  Google Scholar 

  44. Ouni H, Dhahbi M (2010) Spectrometric study of crystal violet in presence of polyacrylic acid and polyethylenimine and its removal by polyelectrolyte enhanced ultrafiltration. Sep Purif Technol 72:340–346. https://doi.org/10.1016/j.seppur.2010.03.003

    Article  CAS  Google Scholar 

  45. Simonič M (2009) Efficiency of ultrafiltration for the pre-treatment of dye-bath effluents. Desalination 245:701–707. https://doi.org/10.1016/j.desal.2009.02.040

    Article  CAS  Google Scholar 

  46. Barredo-Damas S, Alcaina-Miranda MI, Bes-Piá A et al (2010) Ceramic membrane behavior in textile wastewater ultrafiltration. Desalination 250:623–628. https://doi.org/10.1016/j.desal.2009.09.037

    Article  CAS  Google Scholar 

  47. Chakraborty JN (2010) Waste-water problem in textile industry. Fundam Pract Colouration Text. https://doi.org/10.1533/9780857092823.381

    Article  Google Scholar 

  48. Petrov SP, Stoychev PA (2003) Ultrafiltration purification of waters contaminated with bifunctional reactive dyes. Desalination 154:247–252. https://doi.org/10.1016/S0011-9164(03)80040-1

    Article  CAS  Google Scholar 

  49. Ahmad AL, Puasa SW, Abiding S (2017) Crossflow ultrafiltration for removing direct-15 Dye from wastewater of textile industry. ASEAN J Sci Technol Dev 23:207. https://doi.org/https://doi.org/10.29037/ajstd.105

  50. Jiang M, Ye K, Deng J et al (2018) Conventional ultrafiltration as effective strategy for dye/salt fractionation in textile wastewater treatment. Environ Sci Technol 52:10698–10708. https://doi.org/10.1021/acs.est.8b02984

    Article  CAS  PubMed  Google Scholar 

  51. Yang C, Xu W, Nan Y et al (2020) Fabrication and characterization of a high performance polyimide ultrafiltration membrane for dye removal. J Colloid Interface Sci 562:589–597. https://doi.org/10.1016/j.jcis.2019.11.075

    Article  CAS  PubMed  Google Scholar 

  52. Marcucci M, Nosenzo G, Capannelli G et al (2001) Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalination 138:75–82. https://doi.org/10.1016/S0011-9164(01)00247-8

    Article  CAS  Google Scholar 

  53. Purkait MK, DasGupta S, De S (2006) Micellar enhanced ultrafiltration of eosin dye using hexadecyl pyridinium chloride. J Hazard Mater 136:972–977. https://doi.org/10.1016/j.jhazmat.2006.01.040

    Article  CAS  PubMed  Google Scholar 

  54. Baek K, Lee HH, Yang JW (2003) Micellar-enhanced ultrafiltration for simultaneous removal of ferricyanide and nitrate. Desalination 158:157–166. https://doi.org/10.1016/S0011-9164(03)00446-6

    Article  CAS  Google Scholar 

  55. Chung YS, Yoo SH, Kim CK (2009) Effects of membrane hydrophilicity on the removal of a trihalomethane via micellar-enhanced ultrafiltration process. J Memb Sci 326:714–720. https://doi.org/10.1016/j.memsci.2008.11.004

    Article  CAS  Google Scholar 

  56. Doulia D, Xiarchos I (2007) Ultrafiltration of micellar solutions of nonionic surfactants with or without alachlor pesticide. J Memb Sci 296:58–64. https://doi.org/10.1016/j.memsci.2007.03.013

    Article  CAS  Google Scholar 

  57. Huang JH, Zhou CF, Zeng GM et al (2010) Micellar-enhanced ultrafiltration of methylene blue from dye wastewater via a polysulfone hollow fiber membrane. J Memb Sci 365:138–144. https://doi.org/10.1016/j.memsci.2010.08.052

    Article  CAS  Google Scholar 

  58. Ahmad AL, Puasa SW, Zulkali MMD (2006) Micellar-enhanced ultrafiltration for removal of reactive dyes from an aqueous solution. Desalination 191:153–161. https://doi.org/10.1016/j.desal.2005.07.022

    Article  CAS  Google Scholar 

  59. Purkait MK, DasGupta S, De S (2004) Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant. Sep Purif Technol 37:81–92. https://doi.org/10.1016/j.seppur.2003.08.005

    Article  CAS  Google Scholar 

  60. Allègre C, Moulin P, Maisseu M, Charbit F (2006) Treatment and reuse of reactive dyeing effluents. J Memb Sci 269:15–34. https://doi.org/10.1016/j.memsci.2005.06.014

    Article  CAS  Google Scholar 

  61. Bes-Piá A, Iborra-Clar MI, Iborra-Clar A et al (2005) Nanofiltration of textile industry wastewater using a physicochemical process as a pre-treatment. Desalination 178:343–349. https://doi.org/10.1016/j.desal.2004.11.044

    Article  CAS  Google Scholar 

  62. Tang C, Chen V (2002) Nanofiltration of textile wastewater for water reuse. Desalination 143:11–20. https://doi.org/10.1016/S0011-9164(02)00216-3

    Article  CAS  Google Scholar 

  63. Van Der Bruggen B, Daems B, Wilms D, Vandecasteele C (2001) Mechanisms of retention and flux decline for the nanofiltration of dye baths from the textile industry. Sep Purif Technol 22:519–528. https://doi.org/10.1016/S1383-5866(00)00134-9

    Article  Google Scholar 

  64. Van der Bruggen B, Cornelis G, Vandecasteele C, Devreese I (2005) Fouling of nanofiltration and ultrafiltration membranes applied for wastewater regeneration in the textile industry. Desalination 175:111–119. https://doi.org/10.1016/j.desal.2004.09.025

    Article  CAS  Google Scholar 

  65. Al-Amoudi A, Lovitt RW (2007) Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J Memb Sci 303:4–28. https://doi.org/10.1016/j.memsci.2007.06.002

    Article  CAS  Google Scholar 

  66. Fersi C, Gzara L, Dhahbi M (2009) Flux decline study for textile wastewater treatment by membrane processes. Desalination 244:321–332. https://doi.org/10.1016/j.desal.2008.04.046

    Article  CAS  Google Scholar 

  67. Fersi C, Gzara L, Dhahbi M (2005) Treatment of textile effluents by membrane technologies. Desalination 185:399–409. https://doi.org/10.1016/j.desal.2005.03.087

    Article  CAS  Google Scholar 

  68. Liu M, Chen Q, Lu K et al (2017) High efficient removal of dyes from aqueous solution through nanofiltration using diethanolamine-modified polyamide thin-film composite membrane. Sep Purif Technol 173:135–143. https://doi.org/10.1016/j.seppur.2016.09.023

    Article  CAS  Google Scholar 

  69. Emadzadeh D, Lau WJ, Rahbari-Sisakht M et al (2015) A novel thin film nanocomposite reverse osmosis membrane with superior anti-organic fouling affinity for water desalination. Desalination 368:106–113. https://doi.org/10.1016/j.desal.2014.11.019

    Article  CAS  Google Scholar 

  70. Kebria MRS, Jahanshahi M, Rahimpour A (2015) SiO2 modified polyethyleneimine-based nanofiltration membranes for dye removal from aqueous and organic solutions. Desalination 367:255–264. https://doi.org/10.1016/j.desal.2015.04.017

    Article  CAS  Google Scholar 

  71. Fan Z, Wang Z, Sun N et al (2008) Performance improvement of polysulfone ultrafiltration membrane by blending with polyaniline nanofibers. J Memb Sci 320:363–371. https://doi.org/10.1016/j.memsci.2008.04.019

    Article  CAS  Google Scholar 

  72. Chen Y, Zhang Y, Liu J et al (2012) Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions. Chem Eng J 210:298–308. https://doi.org/10.1016/j.cej.2012.08.100

    Article  CAS  Google Scholar 

  73. Abdi G, Alizadeh A, Zinadini S, Moradi G (2018) Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid. J Memb Sci 552:326–335. https://doi.org/10.1016/j.memsci.2018.02.018

    Article  CAS  Google Scholar 

  74. Zheng Y, Yao G, Cheng Q et al (2013) Positively charged thin-film composite hollow fiber nanofiltration membrane for the removal of cationic dyes through submerged filtration. Desalination 328:42–50. https://doi.org/10.1016/j.desal.2013.08.009

    Article  CAS  Google Scholar 

  75. Van Der Bruggen B, Schaep J, Wilms D, Vandecasteele C (1999) Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J Memb Sci 156:29–41. https://doi.org/10.1016/S0376-7388(98)00326-3

    Article  Google Scholar 

  76. Lau WJ, Ismail AF (2009) Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control - a review. Desalination 245:321–348. https://doi.org/10.1016/j.desal.2007.12.058

    Article  CAS  Google Scholar 

  77. Peydayesh M, Mohammadi T, Bakhtiari O (2018) Effective treatment of dye wastewater via positively charged TETA-MWCNT/PES hybrid nanofiltration membranes. Sep Purif Technol 194:488–502. https://doi.org/10.1016/j.seppur.2017.11.070

    Article  CAS  Google Scholar 

  78. Chen Q, Yu P, Huang W et al (2015) High-flux composite hollow fiber nanofiltration membranes fabricated through layer-by-layer deposition of oppositely charged crosslinked polyelectrolytes for dye removal. J Memb Sci. https://doi.org/10.1016/j.memsci.2015.05.068

    Article  Google Scholar 

  79. Yang C, Xu W, Nan Y et al (2020) Novel negatively charged nanofiltration membrane based on 4,4′-diaminodiphenylmethane for dye removal. Sep Purif Technol 248:117089. https://doi.org/10.1016/j.seppur.2020.117089

    Article  CAS  Google Scholar 

  80. Song Y, Sun Y, Chen M et al (2020) Efficient removal and fouling-resistant of anionic dyes by nanofiltration membrane with phosphorylated chitosan modified graphene oxide nanosheets incorporated selective layer. J Water Process Eng 34:101086. https://doi.org/10.1016/j.jwpe.2019.101086

    Article  Google Scholar 

  81. Bano S, Mahmood A, Kim SJ, Lee KH (2015) Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J Mater Chem A 3:2065–2071. https://doi.org/10.1039/c4ta03607g

    Article  CAS  Google Scholar 

  82. Zhang H, Li B, Pan J et al (2017) Carboxyl-functionalized graphene oxide polyamide nanofiltration membrane for desalination of dye solutions containing monovalent salt. J Memb Sci 539:128–137. https://doi.org/10.1016/j.memsci.2017.05.075

    Article  CAS  Google Scholar 

  83. Mi YF, Xu G, Guo YS et al (2020) Development of antifouling nanofiltration membrane with zwitterionic functionalized monomer for efficient dye/salt selective separation. J Memb Sci 601:117795. https://doi.org/10.1016/j.memsci.2019.117795

    Article  CAS  Google Scholar 

  84. Nataraj SK, Hosamani KM, Aminabhavi TM (2009) Nanofiltration and reverse osmosis thin film composite membrane module for the removal of dye and salts from the simulated mixtures. Desalination 249:12–17. https://doi.org/10.1016/j.desal.2009.06.008

    Article  CAS  Google Scholar 

  85. Nakib NMHA (2013) Reverse osmosis polyamide membrane for the removal of blue and yellow dye from waste water. Iraq J Chem Pet Eng 14:49–55

    Google Scholar 

  86. Uzal N, Yilmaz L, Yetis U (2010) Nanofiltration and reverse osmosis for reuse of indigo dye rinsing waters. Sep Sci Technol 45:331–338. https://doi.org/10.1080/01496390903484818

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Moradihamedani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradihamedani, P. Recent advances in dye removal from wastewater by membrane technology: a review. Polym. Bull. 79, 2603–2631 (2022). https://doi.org/10.1007/s00289-021-03603-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03603-2

Keywords

Navigation