Skip to main content

Advertisement

Log in

Review on preparation and adsorption properties of chitosan and chitosan composites

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Compared with traditional polymers, biopolymers are more environmentally friendly due to their sustainable sources, easy decomposition and naturally recycled by biological processes. Among all biopolymers, chitosan (CS) proves attractive for several adsorption-related applications such as in gas capture and removal of dyes or heavy metal ions. However, there are considerable drawbacks such as unstable yield, non-uniform sizes, lack of process repeatability, low mechanical strength and chemical resistance. Thus, physical and chemical modifications have been proposed to obtain stable size and improved mechanical property of CS beads, microspheres, film or fiber. This paper introduces the research background of CS and modified CS as an adsorbent and analyzes the modification, application and adsorption mechanism of CS and CS composite materials. The research progress of the adsorption of metal ions, dyes and anions by CS and CS composite materials is reviewed, and the main factors affecting their adsorption performance are summarized. Finally, the development trend of CS as adsorbents is prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ren L, Xu J, Zhang Y, Zhou J, Chen D, Chang Z (2019) Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium. Int J Biol Macromol 135:898–906. https://doi.org/10.1016/j.ijbiomac.2019.06.007

    Article  CAS  PubMed  Google Scholar 

  2. Visa M, Duta A (2013) Methyl-orange and cadmium simultaneous removal using fly ash and photo-Fenton systems. J Hazard Mater 244–245:773–779. https://doi.org/10.1016/j.jhazmat.2012.11.013

    Article  CAS  PubMed  Google Scholar 

  3. Nga NK, Chinh HD, Hong PTT, Huy TQ (2016) Facile preparation of chitosan films for high performance removal of reactive blue 19 dye from aqueous solution. J Polym Environ 25(2):146–155. https://doi.org/10.1007/s10924-016-0792-5

    Article  CAS  Google Scholar 

  4. Dang M, Zhang T, Wang P (2009) Crosslinked chitosan resin. Chemical Industry Press, China

    Google Scholar 

  5. BhanuKalra RAGa, (2002) Biodegradable polymers for the environment. Science 297:803–807

    Article  Google Scholar 

  6. Gu F, Geng J, Li M, Chang J, Cui Y (2019) Synthesis of chitosan-ignosulfonate composite as an adsorbent for dyes and metal ions removal from wastewater. ACS Omega 4(25):21421–21430. https://doi.org/10.1021/acsomega.9b03128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harish Prashanth KV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends Food Sci Technol 18(3):117–131. https://doi.org/10.1016/j.tifs.2006.10.022

    Article  CAS  Google Scholar 

  8. Ahmed MJ, Hameed BH, Hummadi EH (2020) Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohyd Polym 247:116690. https://doi.org/10.1016/j.carbpol.2020.116690

    Article  CAS  Google Scholar 

  9. Dutta P, Dutta J, Tripathi V (2003) Chitin and chitosan: Chemistry, properties and applications. J Sci Indus Res 63

  10. Ngah WS, Fatinathan S (2010) Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: Kinetic, equilibrium and thermodynamic studies. J Environ Manage 91(4):958–969. https://doi.org/10.1016/j.jenvman.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  11. Solisio C, Lodi A, Torre P, Converti A, Del Borghi M (2006) Copper removal by dry and re-hydrated biomass of Spirulina platensis. Bioresour Technol 97(14):1756–1760. https://doi.org/10.1016/j.biortech.2005.07.018

    Article  CAS  PubMed  Google Scholar 

  12. Song MH, Kim S, Reddy DH, Wei W, Bediako JK, Park S, Yun YS (2017) Development of polyethyleneimine-loaded core-shell chitosan hollow beads and their application for platinum recovery in sequential metal scavenging fill-and-draw process. J Hazard Mater 324(Pt B):724–731. https://doi.org/10.1016/j.jhazmat.2016.11.047

    Article  CAS  PubMed  Google Scholar 

  13. Ajitha P, Vijayalakshmi K, Saranya M, Gomathi T, Rani K, Sudha PN, Anil S (2017) Removal of toxic heavy metal lead (II) using chitosan oligosaccharide-graft-maleic anhydride/polyvinyl alcohol/silk fibroin composite. Int J Biol Macromol 104(Pt B):1469–1482. https://doi.org/10.1016/j.ijbiomac.2017.05.111

    Article  CAS  Google Scholar 

  14. Shankar P, Gomathi T, Vijayalakshmi K, Sudha PN (2014) Comparative studies on the removal of heavy metals ions onto cross linked chitosan-g-acrylonitrile copolymer. Int J Biol Macromol 67:180–188. https://doi.org/10.1016/j.ijbiomac.2014.03.010

    Article  CAS  PubMed  Google Scholar 

  15. Coelho TC, Laus R, Mangrich AS, de Fávere VT, Laranjeira MC (2007) Effect of heparin coating on epichlorohydrin cross-linked chitosan microspheres on the adsorption of copper (II) ions. React Funct Polym 67(5):468–75. https://doi.org/10.1016/j.reactfunctpolym.2007.02.009

    Article  CAS  Google Scholar 

  16. Liu H, Yang F, Zheng Y, Kang J, Qu J, Chen JP (2011) Improvement of metal adsorption onto chitosan/Sargassum sp composite sorbent by an innovative ion-imprint technology. Water Res 45(1):145–154. https://doi.org/10.1016/j.watres.2010.08.017

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Cao X, Hua R, Wang Y, Liu Y, Pang C, Wang Y (2010) Selective adsorption of uranyl ion on ion-imprinted chitosan/PVA cross-linked hydrogel. Hydrometallurgy 104(2):150–155. https://doi.org/10.1016/j.hydromet.2010.05.009

    Article  CAS  Google Scholar 

  18. Reiad NA, Salam OEA, Abadir EF, Harraz FA (2012) Adsorptive removal of iron and manganese ions from aqueous solutions with microporous chitosan/polyethylene glycol blend membrane. J Environ Sci 24(8):1425–1432. https://doi.org/10.1016/s1001-0742(11)60954-6

    Article  CAS  Google Scholar 

  19. Hu XJ, Wang JS, Liu YG, Li X, Zeng GM, Bao ZL, Zeng XX, Chen AW, Long F (2011) Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: isotherms, kinetics and thermodynamics. J Hazard Mater 185(1):306–314. https://doi.org/10.1016/j.jhazmat.2010.09.034

    Article  CAS  PubMed  Google Scholar 

  20. Chethan PD, Vishalakshi B (2015) Synthesis of ethylenediamine modified chitosan microspheres for removal of divalent and hexavalent ions. Int J Biol Macromol 75:179–185. https://doi.org/10.1016/j.ijbiomac.2015.01.032

    Article  CAS  PubMed  Google Scholar 

  21. Etemadi M, Samadi S, Yazd SS, Jafari P, Yousefi N, Aliabadi M (2017) Selective adsorption of Cr(VI) ions from aqueous solutions using Cr(6+)-imprinted Pebax/chitosan/GO/APTES nanofibrous adsorbent. Int J Biol Macromol 95:725–733. https://doi.org/10.1016/j.ijbiomac.2016.11.117

    Article  CAS  PubMed  Google Scholar 

  22. He X, Xu H, Li H (2015) Cr(VI) Removal from aqueous solution by chitosan/carboxylmethyl cellulose/silica hybrid membrane. World J Eng Technol 03(03):234–240. https://doi.org/10.4236/wjet.2015.33C034

    Article  Google Scholar 

  23. Ronak Bhatta S, Padmaja (2015) Adsorption of chromium from aqueous solutions using crosslinked chitosan–diethylenetriaminepentaacetic acid. Int J Biol Macromol 74:458–466. https://doi.org/10.1016/j.ijbiomac.2014.12.041

    Article  CAS  Google Scholar 

  24. Laus R, de Favere VT (2011) Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin-triphosphate. Bioresour Technol 102(19):8769–8776. https://doi.org/10.1016/j.biortech.2011.07.057

    Article  CAS  PubMed  Google Scholar 

  25. Saha TK (2010) Adsorption of methyl orange onto chitosan from aqueous solution. J Water Res Prot 02(10):898–906. https://doi.org/10.4236/jwarp.2010.210107

    Article  CAS  Google Scholar 

  26. Ruihua Huang QL, Huo J, Yang B (2017) Adsorption of methyl orange onto protonated crosslinked chitosan. Arab J Chem 10:24–32. https://doi.org/10.1016/j.arabjc.2013.05.017

    Article  CAS  Google Scholar 

  27. Nagireddi S, Katiyar V, Uppaluri R (2017) Pd(II) adsorption characteristics of glutaraldehyde cross-linked chitosan copolymer resin. Int J Biol Macromol 94(Pt A):72–84. https://doi.org/10.1016/j.ijbiomac.2016.09.088

    Article  CAS  PubMed  Google Scholar 

  28. Sowmya A, Meenakshi S (2014) Zr(IV) loaded cross-linked chitosan beads with enhanced surface area for the removal of nitrate and phosphate. Int J Biol Macromol 69:336–343. https://doi.org/10.1016/j.ijbiomac.2014.05.043

    Article  CAS  PubMed  Google Scholar 

  29. Huu Bui T, Lee W, Jeon S, Kim K-W, Lee Y (2020) Enhanced gold(III) adsorption using glutaraldehyde-crosslinked chitosan beads: effect of crosslinking degree on adsorption selectivity, capacity, and mechanism. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.116989

    Article  Google Scholar 

  30. He J, Lu Y, Luo G (2014) Ca(II) imprinted chitosan microspheres: an effective and green adsorbent for the removal of Cu(II), Cd(II) and Pb(II) from aqueous solutions. Chem Eng J 244:202–208. https://doi.org/10.1016/j.cej.2014.01.096

    Article  CAS  Google Scholar 

  31. Huang R, Yang B, Liu Q (2013) Removal of chromium(VI) Ions from aqueous solutions with protonated crosslinked chitosan. J Appl Polym Sci 129(2):908–915. https://doi.org/10.1002/app.38685

    Article  CAS  Google Scholar 

  32. Zhu T, Zhu T, Gao J, Zhang L, Zhang W (2017) Enhanced adsorption of fluoride by cerium immobilized cross-linked chitosan composite. J Fluor Chem 194:80–88. https://doi.org/10.1016/j.jfluchem.2017.01.002

    Article  CAS  Google Scholar 

  33. Jayakumar R, Prabaharan M, Reis RL, Manoa JF (2005) Graft copolymerized chitosan : present status and applications. Carbohyd Polym 62(2):142–158. https://doi.org/10.1016/j.carbpol.2005.07.017

    Article  CAS  Google Scholar 

  34. Anirudhan TS, Rijith S, Tharun AR (2010) Adsorptive removal of thorium (IV) from aqueous solutions using poly (methacrylic acid)-grafted chitosan/bentonite composite matrix: process design and equilibrium studies. Coll Surf Physicochem Eng Asp 368(1–3):13–22. https://doi.org/10.1016/j.colsurfa.2010.07.005

    Article  CAS  Google Scholar 

  35. Jiang X, Sun Y, Liu L, Wang S, Tian X (2014) Adsorption of C.I. Reactive blue 19 from aqueous solutions by porous particles of the grafted chitosan. Chem Eng J 235:151–157. https://doi.org/10.1016/j.cej.2013.09.001

    Article  CAS  Google Scholar 

  36. Kuang SP, Wang ZZ, Liu J, Wu ZC (2013) Preparation of triethylene-tetramine grafted magnetic chitosan for adsorption of Pb(II) ion from aqueous solutions. J Hazard Mater 260:210–219. https://doi.org/10.1016/j.jhazmat.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  37. Gopal Reddi MR, Gomathi T, Saranya M, Sudha PN (2017) Adsorption and kinetic studies on the removal of chromium and copper onto Chitosan-g-maliec anhydride-g-ethylene dimethacrylate. Int J Biol Macromol 104(Pt B):1578–1585. https://doi.org/10.1016/j.ijbiomac.2017.01.142

    Article  CAS  PubMed  Google Scholar 

  38. Santhana Krishna Kumar A, Uday Kumar C, Rajesh V, Rajesh N (2014) Microwave assisted preparation of n-butylacrylate grafted chitosan and its application for Cr(VI) adsorption. Int J Biol Macromol 66:135–143. https://doi.org/10.1016/j.ijbiomac.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  39. Rocha LS, Almeida Â, Nunes C, Henriques B, Coimbra MA, Lopes CB, Silva CM, Duarte AC, Pereira E (2016) Simple and effective chitosan based films for the removal of Hg from waters: Equilibrium, kinetic and ionic competition. Chem Eng J 300:217–229. https://doi.org/10.1016/j.cej.2016.04.054

    Article  CAS  Google Scholar 

  40. Ahmadi SJ, Noori-Kalkhoran O, Shirvani-Arani S (2010) Synthesis and characterization of new ion-imprinted polymer for separation and preconcentration of uranyl (UO22+) ions. J Hazard Mater 175(1–3):193–197. https://doi.org/10.1016/j.jhazmat.2009.09.148

    Article  CAS  PubMed  Google Scholar 

  41. Tang X, Gan L, Duan Y, Sun Y, Zhang Y, Zhang Z (2017) A novel Cd 2+ -imprinted chitosan-based composite membrane for Cd 2+ removal from aqueous solution. Mater Lett 198:121–123. https://doi.org/10.1016/j.matlet.2017.04.006

    Article  CAS  Google Scholar 

  42. Huang G, Chen Z, Wang L, Lv T, Shi J (2016) Removal of thorium(IV) from aqueous solution using magnetic ion-imprinted chitosan resin. J Radioanal Nucl Chem 310(3):1265–1272. https://doi.org/10.1007/s10967-016-4993-0

    Article  CAS  Google Scholar 

  43. Deng H, Wei Z, Wang X (2017) Enhanced adsorption of active brilliant red X-3B dye on chitosan molecularly imprinted polymer functionalized with Ti(IV) as Lewis acid. Carbohydr Polym 157:1190–1197. https://doi.org/10.1016/j.carbpol.2016.10.087

    Article  CAS  PubMed  Google Scholar 

  44. Liu E, Xu X, Zheng X, Zhang F, Liu E, Li C (2017) An ion imprinted macroporous chitosan membrane for efficiently selective adsorption of dysprosium. Sep Purif Technol 189:288–295. https://doi.org/10.1016/j.seppur.2017.06.079

    Article  CAS  Google Scholar 

  45. Zheng X, Liu E, Zhang F, Dai J, Yan Y, Li C (2016) Selective adsorption and separation of gadolinium with three-dimensionally interconnected macroporous imprinted chitosan films. Cellulose 24(2):977–988. https://doi.org/10.1007/s10570-016-1136-2

    Article  CAS  Google Scholar 

  46. Ying X, Yang S, Qiang T, Peng Z, Yuejiao W, Zhenning L, Feng Z, Weijun S (2017) Adsorption-controlled preparation of anionic imprinted amino-functionalization chitosan for recognizing rhenium(VII). Sep Purif Technol 177:142–151. https://doi.org/10.1016/j.seppur.2016.12.028

    Article  CAS  Google Scholar 

  47. Mao J, Lin S, Lu XJ, Wu XH, Zhou T, Yun YS (2020) Ion-imprinted chitosan fiber for recovery of Pd(II): obtaining high selectivity through selective adsorption and two-step desorption. Environ Res 182:108995. https://doi.org/10.1016/j.envres.2019.108995

    Article  CAS  PubMed  Google Scholar 

  48. Gizawy MA, Shamsel-Din HA, Abdelmonem IM, Ibrahim MIA, Mohamed LA, Metwally E (2020) Synthesis of chitosan-acrylic acid/multiwalled carbon nanotubes composite for theranostic 47Sc separation from neutron irradiated titanium target. Int J Biol Macromol 163:79–86. https://doi.org/10.1016/j.ijbiomac.2020.06.249

    Article  CAS  PubMed  Google Scholar 

  49. Pandey S, Tiwari S (2015) Facile approach to synthesize chitosan based composite–Characterization and cadmium(II) ion adsorption studies. Carbohydr Polym 134:646–656. https://doi.org/10.1016/j.carbpol.2015.08.027

    Article  CAS  PubMed  Google Scholar 

  50. Rahmi L, Julinawati S (2017) Preparation of chitosan composite film reinforced with cellulose isolated from oil palm empty fruit bunch and application in cadmium ions removal from aqueous solutions. Carbohydr Polym 170:226–233. https://doi.org/10.1016/j.carbpol.2017.04.084

    Article  CAS  PubMed  Google Scholar 

  51. Yavuz AG, Dincturk-Atalay E, Uygun A, Gode F, Aslan E (2011) A comparison study of adsorption of Cr(VI) from aqueous solutions onto alkyl-substituted polyaniline/chitosan composites. Desalination 279(1–3):325–331. https://doi.org/10.1016/j.desal.2011.06.034

    Article  CAS  Google Scholar 

  52. Dai J, Yan H, Yang H, Cheng R (2010) Simple method for preparation of chitosan/poly(acrylic acid) blending hydrogel beads and adsorption of copper(II) from aqueous solutions. Chem Eng J 165(1):240–249. https://doi.org/10.1016/j.cej.2010.09.024

    Article  CAS  Google Scholar 

  53. Silva JM, Farias BS, Gründmann DD, Cadaval TR Jr, Moura JM, Dotto GL, Pinto LA (2017) Development of chitosan/Spirulina bio-blend films and its biosorption potential for dyes. J Appl Polym Sci. https://doi.org/10.1002/app.4458010.1002/APP.44580

    Article  Google Scholar 

  54. Aliabadi M, Irani M, Ismaeili J, Piri H, Parnian MJ (2013) Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution. Chem Eng J 220:237–243. https://doi.org/10.1016/j.cej.2013.01.021

    Article  CAS  Google Scholar 

  55. Badawi MA, Negm NA, Abou Kana MTH, Hefni HH, Abdel Moneem MM (2017) Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism. Int J Biol Macromol 99:465–476. https://doi.org/10.1016/j.ijbiomac.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  56. Abdeen Z, Mohammad SG, Mahmoud MS (2015) Adsorption of Mn (II) ion on polyvinyl alcohol/chitosan dry blending from aqueous solution. Environ Nanotechnol, Monitoring Manag 3:1–9. https://doi.org/10.1016/j.enmm.2014.10.001

    Article  Google Scholar 

  57. Jamnongkan T, Singcharoen K (2016) Towards Novel Adsorbents: The Ratio of PVA/chitosan Blended Hydrogels on the Copper (II) Ion Adsorption. Energy Procedia 89:299–306. https://doi.org/10.1016/j.egypro.2016.05.038

    Article  CAS  Google Scholar 

  58. Habiba U, Joo TC, Siddique TA, Salleh A, Ang BC, Afifi AM (2017) Effect of degree of deacetylation of chitosan on adsorption capacity and reusability of chitosan/polyvinyl alcohol/TiO2 nano composite. Int J Biol Macromol 104(Pt A):1133–1142. https://doi.org/10.1016/j.ijbiomac.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  59. Ali MEA (2018) Synthesis and adsorption properties of chitosan-CDTA-GO nanocomposite for removal of hexavalent chromium from aqueous solutions. Arab J Chem 11(7):1107–1116. https://doi.org/10.1016/j.arabjc.2016.09.010

    Article  CAS  Google Scholar 

  60. Hoda Beheshti MI, Hosseini L, Rahimi A, Aliabadi M (2016) Removal of Cr (VI) from aqueous solutions using chitosan/MWCNT/Fe3O4 composite nanofibers-batch and column studies. Chem Eng J 284:557–564. https://doi.org/10.1016/j.cej.2015.08.158

    Article  CAS  Google Scholar 

  61. Tekay E, Aydınoğlu D, Şen S (2019) Effective adsorption of Cr(VI) by high strength chitosan/montmorillonite composite hydrogels involving Spirulina biomass/microalgae. J Polym Environ 27(8):1828–1842. https://doi.org/10.1007/s10924-019-01481-4

    Article  CAS  Google Scholar 

  62. Batista AC, Villanueva ER, Amorim RV, Tavares MT, Campos-Takaki GM (2011) Chromium (VI) ion adsorption features of chitosan film and its chitosan/zeolite conjugate 13X film. Molecules 16(5):3569–3579. https://doi.org/10.3390/molecules16053569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Meiling P, Naoki K, Hiroshi I (2015) Adsorption of Chromium (VI) from Aqueous Solution Using Zeolit/Chitosan Hybrid Composite. J Chem Chem Eng. https://doi.org/10.17265/1934-7375/2015.07.001

    Article  Google Scholar 

  64. Mu C, Zhang L, Zhang X, Zhong L, Li Y (2020) Selective adsorption of Ag (I) from aqueous solutions using Chitosan/polydopamine@C@magnetic fly ash adsorbent beads. J Hazard Mater 381:120943. https://doi.org/10.1016/j.jhazmat.2019.120943

    Article  CAS  PubMed  Google Scholar 

  65. Darjito Darjito DP, Ningsih R (2014) The Adsorption of Cr(VI) Ions Using Chitosan-Alumina Adsorbent. J Pure Appl Chem Res 3(2):53–61

    Article  Google Scholar 

  66. Belalia A, Zehhaf A, Benyoucef A (2018) Preparation of Hybrid Material Based of PANI with SiO2 and Its Adsorption of Phenol from Aqueous Solution. Polym Sci Ser B 60:816–824. https://doi.org/10.1134/S1560090418060039

    Article  CAS  Google Scholar 

  67. Humelnicu D, Dinu MV, Dragan ES (2011) Adsorption characteristics of UO22+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. J Hazard Mater 185(1):447–455. https://doi.org/10.1016/j.jhazmat.2010.09.053

    Article  CAS  PubMed  Google Scholar 

  68. Pan J, Yao H, Li X, Wang B, Huo P, Xu W, Ou H, Yan Y (2011) Synthesis of chitosan/gamma-Fe2O3/fly-ash-cenospheres composites for the fast removal of bisphenol A and 2,4,6-trichlorophenol from aqueous solutions. J Hazard Mater 190(1–3):276–284. https://doi.org/10.1016/j.jhazmat.2011.03.046

    Article  CAS  PubMed  Google Scholar 

  69. Demarchi CA, Debrassi A, de Campos BF, Nedelko N, Ślawska-Waniewska A, Dłużewski P, Dal Magro J, Scapinello J, Rodrigues CA (2015) Adsorption of the dye Remazol Red 198 (RR198) by O-carboxymethylchitosan-N-lauryl/γ-Fe2O3 magnetic nanoparticles. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.08.028

    Article  Google Scholar 

  70. Geng B, Jin Z, Li T, Qi X (2009) Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere 75(6):825–830. https://doi.org/10.1016/j.chemosphere.2009.01.009

    Article  CAS  PubMed  Google Scholar 

  71. Zimmermann AC, Mecabo A, Fagundes T, Rodrigues CA (2010) Adsorption of Cr(VI) using Fe-crosslinked chitosan complex (Ch-Fe). J Hazard Mater 179(1–3):192–196. https://doi.org/10.1016/j.jhazmat.2010.02.078

    Article  CAS  PubMed  Google Scholar 

  72. Fan C, Li K, Li J, Ying D, Wang Y, Jia J (2017) Comparative and competitive adsorption of Pb(II) and Cu(II) using tetraethylenepentamine modified chitosan/CoFe2O4 particles. J Hazard Mater 326:211–220. https://doi.org/10.1016/j.jhazmat.2016.12.036

    Article  CAS  PubMed  Google Scholar 

  73. Lasheen MR, El-Sherif IY, Tawfik ME, El-Wakeel ST, El-Shahat MF (2016) Preparation and adsorption properties of nano magnetite chitosan films for heavy metal ions from aqueous solution. Mater Res Bull 80:344–350. https://doi.org/10.1016/j.materresbull.2016.04.011

    Article  CAS  Google Scholar 

  74. Zhou L, Liu Z, Liu J, Huang Q (2010) Adsorption of Hg(II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres. Desalination 258(1–3):41–47. https://doi.org/10.1016/j.desal.2010.03.051

    Article  CAS  Google Scholar 

  75. Zhou L, Jin J, Liu Z, Liang X, Shang C (2011) Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. J Hazard Mater 185(2–3):1045–1052. https://doi.org/10.1016/j.jhazmat.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  76. Mallakpour S, Nezamzadeh Ezhieh A (2017) Preparation and characterization of chitosan-poly(vinyl alcohol) nanocomposite films embedded with functionalized multi-walled carbon nanotube. Carbohydr Polym 166:377–386. https://doi.org/10.1016/j.carbpol.2017.02.086

    Article  CAS  PubMed  Google Scholar 

  77. Vatanpour V, Salehi E, Sahebjamee N, Ashrafi M (2018) Novel chitosan/polyvinyl alcohol thin membrane adsorbents modified with detonation nanodiamonds: preparation, characterization, and adsorption performance. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.01.010

    Article  Google Scholar 

  78. Habiba U, Siddique TA, Joo TC, Salleh A, Ang BC, Afifi AM (2017) Synthesis of chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo red and chromium(VI) by flocculation/adsorption. Carbohydr Polym 157:1568–1576. https://doi.org/10.1016/j.carbpol.2016.11.037

    Article  CAS  PubMed  Google Scholar 

  79. Jamshidifard S, Koushkbaghi S, Hosseini S, Rezaei S, Karamipour A, Jafari Rad A, Irani M (2019) Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. J Hazard Mater 368:10–20. https://doi.org/10.1016/j.jhazmat.2019.01.024

    Article  CAS  PubMed  Google Scholar 

  80. Visa M, Isac L, Duta A (2012) Fly ash adsorbents for multi-cation wastewater treatment. Appl Surf Sci 258(17):6345–6352. https://doi.org/10.1016/j.apsusc.2012.03.035

    Article  CAS  Google Scholar 

  81. Visa M, Chelaru A-M (2014) Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment. Appl Surf Sci 303:14–22. https://doi.org/10.1016/j.apsusc.2014.02.025

    Article  CAS  Google Scholar 

  82. Bratskaya SY, Ustinov AY, Azarova YA, Pestov AV (2011) Thiocarbamoyl chitosan: synthesis, characterization and sorption of Au(III), Pt(IV), and Pd(II). Carbohyd Polym 85(4):854–861. https://doi.org/10.1016/j.carbpol.2011.04.008

    Article  CAS  Google Scholar 

  83. Nagireddi S, Golder AK, Uppaluri R (2017) Investigation on Pd (II) removal and recovery characteristics of chitosan from electroless plating solutions. J Water Process Eng 19:8–17. https://doi.org/10.1016/j.jwpe.2017.06.017

    Article  Google Scholar 

  84. Gamage A, Shahidi F (2007) Use of chitosan for the removal of metal ion contaminants and proteins from water. Food Chem 104(3):989–996. https://doi.org/10.1016/j.foodchem.2007.01.004

    Article  CAS  Google Scholar 

  85. Ding P, Huang KL, Li GY, Zeng WW (2007) Mechanisms and kinetics of chelating reaction between novel chitosan derivatives and Zn(II). J Hazard Mater 146(1–2):58–64. https://doi.org/10.1016/j.jhazmat.2006.11.061

    Article  CAS  PubMed  Google Scholar 

  86. Zhou L, Liu J, Liu Z (2009) Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. J Hazard Mater 172(1):439–446. https://doi.org/10.1016/j.jhazmat.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  87. Ibrahim AG, Saleh AS, Elsharma EM, Metwally E, Siyam T (2019) Chitosan-g-maleic acid for effective removal of copper and nickel ions from their solutions. Int J Biol Macromol 121:1287–1294. https://doi.org/10.1016/j.ijbiomac.2018.10.107

    Article  CAS  PubMed  Google Scholar 

  88. Zhu Y, Hu J, Wang J (2012) Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. J Hazard Mater 221–222:155–161. https://doi.org/10.1016/j.jhazmat.2012.04.026

    Article  CAS  PubMed  Google Scholar 

  89. Karthik R, Meenakshi S (2015) Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chem Eng J 263:168–177. https://doi.org/10.1016/j.cej.2014.11.015

    Article  CAS  Google Scholar 

  90. Kyzas GZ, Kostoglou M (2015) Swelling–adsorption interactions during mercury and nickel ions removal by chitosan derivatives. Sep Purif Technol 149:92–102. https://doi.org/10.1016/j.seppur.2015.05.024

    Article  CAS  Google Scholar 

  91. Li K, Wang Y, Huang M, Yan H, Yang H, Xiao S, Li A (2015) Preparation of chitosan-graft-polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water. J Colloid Interface Sci 455:261–270. https://doi.org/10.1016/j.jcis.2015.05.043

    Article  CAS  PubMed  Google Scholar 

  92. Kong A, Ji Y, Ma H, Song Y, He B, Li J (2018) A novel route for the removal of Cu(II) and Ni(II) ions via homogeneous adsorption by chitosan solution. J Clean Prod 192:801–808. https://doi.org/10.1016/j.jclepro.2018.04.271

    Article  CAS  Google Scholar 

  93. Calagui MJ, Senoro DB, Kan CC, Salvacion JW, Futalan CM, Wan MW (2014) Adsorption of indium(III) ions from aqueous solution using chitosan-coated bentonite beads. J Hazard Mater 277:120–126. https://doi.org/10.1016/j.jhazmat.2014.04.043

    Article  CAS  PubMed  Google Scholar 

  94. Monier M, Ayad DM, Wei Y, Sarhan AA (2010) Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. J Hazard Mater 177(1–3):962–970. https://doi.org/10.1016/j.jhazmat.2010.01.012

    Article  CAS  PubMed  Google Scholar 

  95. Abdelmonem IM, Metwally E, Siyam TE, Abou El-Nour F, Mousa A-RM (2020) Gamma radiation-induced preparation of chitosan-acrylic acid-1-vinyl-2-vinylpyrrolidone/multiwalled carbon nanotubes composite for removal of 152+154Eu, 60Co and 134Cs radionuclides. Int J Biol Macromol 164:2258–2266. https://doi.org/10.1016/j.ijbiomac.2020.08.120

    Article  CAS  PubMed  Google Scholar 

  96. Saleh AS, Ibrahim AG, Elsharma EM, Metwally E, Siyam T (2018) Radiation grafting of acrylamide and maleic acid on chitosan and effective application for removal of Co(II) from aqueous solutions. Radiat Phys Chem 144:116–124. https://doi.org/10.1016/j.radphyschem.2017.11.018

    Article  CAS  Google Scholar 

  97. Zhang L, Liu X, Xia W, Zhang W (2014) Preparation and characterization of chitosan-zirconium(IV) composite for adsorption of vanadium(V). Int J Biol Macromol 64:155–161. https://doi.org/10.1016/j.ijbiomac.2013.11.040

    Article  CAS  PubMed  Google Scholar 

  98. Wang J, Peng R, Yang J, Liu Y, Hu X (2011) Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions. Carbohyd Polym 84(3):1169–1175. https://doi.org/10.1016/j.carbpol.2011.01.007

    Article  CAS  Google Scholar 

  99. Bertoni FA, Gonzalez JC, Garcia SI, Sala LF, Bellu SE (2018) Application of chitosan in removal of molybdate ions from contaminated water and groundwater. Carbohydr Polym 180:55–62. https://doi.org/10.1016/j.carbpol.2017.10.027

    Article  CAS  PubMed  Google Scholar 

  100. Sun D, Zhang X, Wu Y, Liu X (2010) Adsorption of anionic dyes from aqueous solution on fly ash. J Hazard Mater 181(1–3):335–342. https://doi.org/10.1016/j.jhazmat.2010.05.015

    Article  CAS  PubMed  Google Scholar 

  101. Lin L, Lin Y, Li C, Wu D, Kong H (2016) Synthesis of zeolite/hydrous metal oxide composites from coal fly ash as efficient adsorbents for removal of methylene blue from water. Int J Miner Process 148:32–40. https://doi.org/10.1016/j.minpro.2016.01.010

    Article  CAS  Google Scholar 

  102. Zhu HY, Fu YQ, Jiang R, Yao J, Xiao L, Zeng GM (2012) Novel magnetic chitosan/poly(vinyl alcohol) hydrogel beads: preparation, characterization and application for adsorption of dye from aqueous solution. Bioresour Technol 105:24–30. https://doi.org/10.1016/j.biortech.2011.11.057

    Article  CAS  PubMed  Google Scholar 

  103. Saber-Samandari S, Saber-Samandari S, Nezafati N, Yahya K (2014) Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads. J Environ Manag 146:481–490. https://doi.org/10.1016/j.jenvman.2014.08.010

    Article  CAS  Google Scholar 

  104. Gao Q, Zhu H, Luo W-J, Wang S, Zhou C-G (2014) Preparation, characterization, and adsorption evaluation of chitosan-functionalized mesoporous composites. Microporous Mesoporous Mater 193:15–26. https://doi.org/10.1016/j.micromeso.2014.02.025

    Article  CAS  Google Scholar 

  105. Annadurai G, Ling LY, Lee JF (2008) Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis. J Hazard Mater 152(1):337–346. https://doi.org/10.1016/j.jhazmat.2007.07.002

    Article  CAS  PubMed  Google Scholar 

  106. Shi C, Lv C, Wu L, Hou X (2017) Porous chitosan/hydroxyapatite composite membrane for dyes static and dynamic removal from aqueous solution. J Hazard Mater 338:241–249. https://doi.org/10.1016/j.jhazmat.2017.05.022

    Article  CAS  PubMed  Google Scholar 

  107. Nesic AR, Velickovic SJ, Antonovic DG (2012) Characterization of chitosan/montmorillonite membranes as adsorbents for Bezactiv Orange V-3R dye. J Hazard Mater 209–210:256–263. https://doi.org/10.1016/j.jhazmat.2012.01.020

    Article  CAS  PubMed  Google Scholar 

  108. Wang Y, Liu X, Wang H, Xia G, Huang W, Song R (2014) Microporous spongy chitosan monoliths doped with graphene oxide as highly effective adsorbent for methyl orange and copper nitrate (Cu(NO3)2) ions. J Colloid Interface Sci 416:243–251. https://doi.org/10.1016/j.jcis.2013.11.012

    Article  CAS  PubMed  Google Scholar 

  109. Vanamudan A, Pamidimukkala P (2015) Chitosan, nanoclay and chitosan-nanoclay composite as adsorbents for Rhodamine-6G and the resulting optical properties. Int J Biol Macromol 74:127–135. https://doi.org/10.1016/j.ijbiomac.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  110. Zhang J, Chen N, Tang Z, Yu Y, Hu Q, Feng C (2015) A study of the mechanism of fluoride adsorption from aqueous solutions onto Fe-impregnated chitosan. Phys Chem Chem Phys 17(18):12041–12050. https://doi.org/10.1039/c5cp00817d

    Article  CAS  PubMed  Google Scholar 

  111. Jóźwiak T, Filipkowska U, Szymczyk P, Mielcarek A (2019) Sorption of nutrients (orthophosphate, nitrate III and V) in an equimolar mixture of P–PO4, N–NO2 and N–NO3 using chitosan. Arab J Chem 12(8):4104–4117. https://doi.org/10.1016/j.arabjc.2016.04.008

    Article  CAS  Google Scholar 

  112. Qian Liu PH, Wang J, Zhang L, Huang R (2016) Phosphate adsorption from aqueous solutions by Zirconium (IV) loaded cross-linked chitosan particles. J Taiwan Inst Chem Eng 59:311–319. https://doi.org/10.1016/j.jtice.2015.08.012

    Article  CAS  Google Scholar 

  113. Ghaee A, Shariaty-Niassar M, Barzin J, Zarghan A (2012) Adsorption of copper and nickel ions on macroporous chitosan membrane: equilibrium study. Appl Surf Sci 258(19):7732–7743. https://doi.org/10.1016/j.apsusc.2012.04.131

    Article  CAS  Google Scholar 

  114. Haseena PV, Padmavathy KS, Krishnan PR, Madhu G (2016) Adsorption of ammonium nitrogen from aqueous systems using chitosan-bentonite film composite. Procedia Technol 24:733–740. https://doi.org/10.1016/j.protcy.2016.05.203

    Article  Google Scholar 

  115. Adewuyi S, Jacob JM, Olaleye OO, Abdulraheem TO, Tayo JA, Oladoyinbo FO (2016) Chitosan-bound pyridinedicarboxylate Ni(II) and Fe(III) complex biopolymer films as waste water decyanidation agents. Carbohydr Polym 151:1235–1239. https://doi.org/10.1016/j.carbpol.2016.06.070

    Article  CAS  PubMed  Google Scholar 

  116. Ye C, Yan B, Ji X, Liao B, Gong R, Pei X, Liu G (2019) Adsorption of fluoride from aqueous solution by fly ash cenospheres modified with paper mill lime mud: experimental and modeling. Ecotoxicol Environ Saf 180:366–373. https://doi.org/10.1016/j.ecoenv.2019.04.086

    Article  CAS  PubMed  Google Scholar 

  117. Rashidi Nodeh H, Sereshti H, Zamiri Afsharian E, Nouri N (2017) Enhanced removal of phosphate and nitrate ions from aqueous media using nanosized lanthanum hydrous doped on magnetic graphene nanocomposite. J Environ Manag 197:265–274. https://doi.org/10.1016/j.jenvman.2017.04.004

    Article  CAS  Google Scholar 

  118. Chatterjee S, Lee DS, Lee MW, Woo SH (2009) Nitrate removal from aqueous solutions by cross-linked chitosan beads conditioned with sodium bisulfate. J Hazard Mater 166(1):508–513. https://doi.org/10.1016/j.jhazmat.2008.11.045

    Article  CAS  PubMed  Google Scholar 

  119. Liu Q, Zhang L, Yang B, Huang R (2015) Removal of fluoride from aqueous solution using Zr(IV) immobilized cross-linked chitosan. Int J Biol Macromol 77:15–23. https://doi.org/10.1016/j.ijbiomac.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  120. Hu H, Yang L, Lin Z, Xiang X, Jiang X, Hou L (2018) Preparation and characterization of novel magnetic Fe3O4/chitosan/Al(OH)3 beads and its adsorption for fluoride. Int J Biol Macromol 114:256–262. https://doi.org/10.1016/j.ijbiomac.2018.03.094

    Article  CAS  PubMed  Google Scholar 

  121. Gonçalves Júnior AC, Nacke H, Schwantes D, Fávere VTd, Laranjeira MCM (2014) Preparation of a chitosan-based anionic exchanger for removal of bromide, chloride, iodide and phosphate ions from aqueous solutions. Acta Scientiarum Technol. https://doi.org/10.4025/actascitechnol.v36i3.19550

    Article  Google Scholar 

  122. Jiang H, Chen P, Luo S, Tu X, Cao Q, Shu M (2013) Synthesis of novel nanocomposite Fe3O4/ZrO2/chitosan and its application for removal of nitrate and phosphate. Appl Surf Sci 284:942–949. https://doi.org/10.1016/j.apsusc.2013.04.013

    Article  CAS  Google Scholar 

  123. Hu Q, Chen N, Feng C, Hu W, Zhang J, Liu H, He Q (2016) Nitrate removal from aqueous solution using granular chitosan-Fe(III)–Al(III) complex: kinetic, isotherm and regeneration studies. J Taiwan Inst Chem Eng 63:216–225. https://doi.org/10.1016/j.jtice.2016.03.004

    Article  CAS  Google Scholar 

  124. Teimouri A, Nasab SG, Vahdatpoor N, Habibollahi S, Salavati H, Chermahini AN (2016) Chitosan /Zeolite Y/Nano ZrO2 nanocomposite as an adsorbent for the removal of nitrate from the aqueous solution. Int J Biol Macromol 93(Pt A):254–266. https://doi.org/10.1016/j.ijbiomac.2016.05.089

    Article  CAS  PubMed  Google Scholar 

  125. Lv L, Xie Y, Liu G, Liu G, Yu J (2014) Removal of perchlorate from aqueous solution by cross-linked Fe(III)-chitosan complex. J Environ Sci 26(4):792–800. https://doi.org/10.1016/s1001-0742(13)60519-7

    Article  Google Scholar 

  126. Mahdavinia GR, Soleymani M, Etemadi H, Sabzi M, Atlasi Z (2018) Model protein BSA adsorption onto novel magnetic chitosan/PVA/laponite RD hydrogel nanocomposite beads. Int J Biol Macromol 107(Pt A):719–729. https://doi.org/10.1016/j.ijbiomac.2017.09.042

    Article  CAS  PubMed  Google Scholar 

  127. Mondal S, Li C, Wang K (2015) Bovine serum albumin adsorption on gluteraldehyde cross-linked chitosan hydrogels. J Chem Eng Data 60(8):2356–2362. https://doi.org/10.1021/acs.jced.5b00264

    Article  CAS  Google Scholar 

  128. Long J, Yu X, Xu E, Wu Z, Xu X, Jin Z, Jiao A (2015) In situ synthesis of new magnetite chitosan/carrageenan nanocomposites by electrostatic interactions for protein delivery applications. Carbohydr Polym 131:98–107. https://doi.org/10.1016/j.carbpol.2015.05.058

    Article  CAS  PubMed  Google Scholar 

  129. Fan X, Zhang L, Zhang G, Shu Z, Shi J (2013) Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture. Carbon 61:423–430. https://doi.org/10.1016/j.carbon.2013.05.026

    Article  CAS  Google Scholar 

  130. Huang C-C, Shen S-C (2013) Adsorption of CO2 on chitosan modified CMK-3 at ambient temperature. J Taiwan Inst Chem Eng 44(1):89–94. https://doi.org/10.1016/j.jtice.2012.09.015

    Article  CAS  Google Scholar 

  131. Wróbel-Iwaniec I, Díez N, Gryglewicz G (2015) Chitosan-based highly activated carbons for hydrogen storage. Int J Hydrogen Energy 40(17):5788–5796. https://doi.org/10.1016/j.ijhydene.2015.03.034

    Article  CAS  Google Scholar 

  132. Zhang M, Ma G, Zhang L, Chen H, Zhu L, Wang C, Liu X (2019) Chitosan-reduced graphene oxide composites with 3D structures as effective reverse dispersed solid phase extraction adsorbents for pesticides analysis. Analyst 144(17):5164–5171. https://doi.org/10.1039/c9an00927b

    Article  CAS  PubMed  Google Scholar 

  133. Liu LF, Zhang PH, Yang FL (2010) Adsorptive removal of 2,4-DCP from water by fresh or regenerated chitosan/ACF/TiO2 membrane. Sep Purif Technol 70(3):354–361. https://doi.org/10.1016/j.seppur.2009.10.022

    Article  CAS  Google Scholar 

  134. Alves DCS, Coseglio BB, Pinto LAA, Cadaval TRS (2020) Development of Spirulina/chitosan foam adsorbent for phenol adsorption. J Mol Liq. https://doi.org/10.1016/j.molliq.2020.113256

    Article  Google Scholar 

  135. Liu B, Lv X, Wang D, Xu Y, Zhang L, Li Y (2012) Adsorption behavior of As(III) onto chitosan resin with As(III) as template ions. J Appl Polym Sci 125(1):246–253. https://doi.org/10.1002/app.35528

    Article  CAS  Google Scholar 

  136. Abou El-Reash YG, Otto M, Kenawy IM, Ouf AM (2011) Adsorption of Cr(VI) and As(V) ions by modified magnetic chitosan chelating resin. Int J Biol Macromol 49(4):513–522. https://doi.org/10.1016/j.ijbiomac.2011.06.001

    Article  CAS  PubMed  Google Scholar 

  137. Kluczka J, Gnus M, Kazek-Kęsik A, Dudek G (2018) Zirconium-chitosan hydrogel beads for removal of boron from aqueous solutions. Polymer 150:109–118. https://doi.org/10.1016/j.polymer.2018.07.010

    Article  CAS  Google Scholar 

  138. Sun J, Rao S, Su Y, Xu R, Yang Y (2011) Magnetic carboxymethyl chitosan nanoparticles with immobilized metal ions for lysozyme adsorption. Colloids Surf A 389(1–3):97–103. https://doi.org/10.1016/j.colsurfa.2011.08.044

    Article  CAS  Google Scholar 

  139. Oladoja NA, Adelagun RO, Ahmad AL, Unuabonah EI, Bello HA (2014) Preparation of magnetic, macro-reticulated cross-linked chitosan for tetracycline removal from aquatic systems. Colloids Surf B Biointerfaces 117:51–59. https://doi.org/10.1016/j.colsurfb.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  140. Ranjbari S, Tanhaei B, Ayati A, Khadempir S, Sillanpaa M (2020) Efficient tetracycline adsorptive removal using tricaprylmethylammonium chloride conjugated chitosan hydrogel beads: Mechanism, kinetic, isotherms and thermodynamic study. Int J Biol Macromol 155:421–429. https://doi.org/10.1016/j.ijbiomac.2020.03.188

    Article  CAS  PubMed  Google Scholar 

  141. Sun J, Guo W, Ji J, Li Z, Yuan X, Pi F, Zhang Y, Sun X (2020) Removal of patulin in apple juice based on novel magnetic molecularly imprinted adsorbent Fe3O4@SiO2@CS-GO@MIP. Lwt. https://doi.org/10.1016/j.lwt.2019.108854

    Article  Google Scholar 

  142. Peng X, Liu B, Chen W, Li X, Wang Q, Meng X, Wang D (2016) Effective biosorption of patulin from apple juice by cross-linked xanthated chitosan resin. Food Control 63:140–146. https://doi.org/10.1016/j.foodcont.2015.11.039

    Article  CAS  Google Scholar 

  143. Zheng Y, Wang A (2009) Evaluation of ammonium removal using a chitosan-g-poly (acrylic acid)/rectorite hydrogel composite. J Hazard Mater 171(1–3):671–677. https://doi.org/10.1016/j.jhazmat.2009.06.053

    Article  CAS  PubMed  Google Scholar 

  144. Witoon T, Chareonpanich M (2012) Synthesis of hierarchical meso-macroporous silica monolith using chitosan as biotemplate and its application as polyethyleneimine support for CO2 capture. Mater Lett 81:181–184. https://doi.org/10.1016/j.matlet.2012.04.126

    Article  CAS  Google Scholar 

  145. Keramati M, Ghoreyshi AA (2014) Improving CO2 adsorption onto activated carbon through functionalization by chitosan and triethylenetetramine. Phys E Low-Dimens Syst Nanostructures 57:161–168

    Article  CAS  Google Scholar 

  146. Luminita Marin BD, Olaru N (2019) Nanoporous furfuryl-imine-chitosan fibers as a new pathway towards ecomaterials for CO2 adsorption. Eur Polym J 120:109214. https://doi.org/10.1016/j.eurpolymj.2019.109214

    Article  CAS  Google Scholar 

  147. Wang S, Xu X, Yang J, Gao J (2011) Effect of the carboxymethyl chitosan on removal of nickel and vanadium from crude oil in the presence of microwave irradiation. Fuel Process Technol 92(3):486–492. https://doi.org/10.1016/j.fuproc.2010.11.001

    Article  CAS  Google Scholar 

  148. Song M-H, Kim JA, Wei W, Kim S, Yun Y-S (2018) Polyethylenimine-coated biomass-chitosan composite fibers for recovery of ruthenium from industrial effluents: Effects of chitosan molecular weight and drying method. Hydrometallurgy 182:114–120. https://doi.org/10.1016/j.hydromet.2018.11.001

    Article  CAS  Google Scholar 

  149. Vieira MLG, Martinez MS, Santos GB, Dotto GL, Pinto LAA (2018) Azo dyes adsorption in fixed bed column packed with different deacetylation degrees chitosan coated glass beads. J Environ Chem Eng 6(2):3233–3241. https://doi.org/10.1016/j.jece.2018.04.059

    Article  CAS  Google Scholar 

  150. Jozwiak T, Filipkowska U, Szymczyk P, Zysk M (2017) Effect of the form and deacetylation degree of chitosan sorbents on sorption effectiveness of reactive black 5 from aqueous solutions. Int J Biol Macromol 95:1169–1178. https://doi.org/10.1016/j.ijbiomac.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  151. Paulino AT, Guilherme MR, Reis AV, Tambourgi EB, Nozaki J, Muniz EC (2007) Capacity of adsorption of Pb2+ and Ni2+ from aqueous solutions by chitosan produced from silkworm chrysalides in different degrees of deacetylation. J Hazard Mater 147(1–2):139–147. https://doi.org/10.1016/j.jhazmat.2006.12.059

    Article  CAS  PubMed  Google Scholar 

  152. Moura JM, Gründmann DDR, Cadaval TRS, Dotto GL, Pinto LAA (2016) Comparison of chitosan with different physical forms to remove reactive black 5 from aqueous solutions. J Environ Chem Eng 4(2):2259–2267. https://doi.org/10.1016/j.jece.2016.04.003

    Article  CAS  Google Scholar 

  153. Gonçalves JO, Duarte DA, Dotto GL, Pinto LAA (2014) Use of chitosan with different deacetylation degrees for the adsorption of food dyes in a binary system. Clean Soil Air Water 42(6):767–774. https://doi.org/10.1002/clen.201200665

    Article  CAS  Google Scholar 

  154. Li F, Ding C (2011) Adsorption of reactive black M-2R on different deacetylation degree chitosan. J Eng Fibers Fabr 6(3):25–31

    CAS  Google Scholar 

  155. Santana Cadaval TR, Camara AS, Dotto GL, Pinto LAdA (2013) Adsorption of Cr (VI) by chitosan with different deacetylation degrees. Desalin Water Treat 51(40–42):7690–7699. https://doi.org/10.1080/19443994.2013.778797

    Article  CAS  Google Scholar 

  156. Habiba U, Siddique TA, Talebian S, Lee JJL, Salleh A, Ang BC, Afifi AM (2017) Effect of deacetylation on property of electrospun chitosan/PVA nanofibrous membrane and removal of methyl orange, Fe(III) and Cr(VI) ions. Carbohydr Polym 177:32–39. https://doi.org/10.1016/j.carbpol.2017.08.115

    Article  CAS  PubMed  Google Scholar 

  157. Bozorgpour F, Ramandi HF, Jafari P, Samadi S, Yazd SS, Aliabadi M (2016) Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: Comparison with chitosan/Al2O3/Fe3O4 beads. Int J Biol Macromol 93(Pt A):557–565. https://doi.org/10.1016/j.ijbiomac.2016.09.015

    Article  CAS  PubMed  Google Scholar 

  158. Lin S-H, Chang C-P, Chang J-C, Mammel K (2014) Comparison of dye adsorption of three forms of chitosan. Advances Chem Eng Sci 04(03):319–326. https://doi.org/10.4236/aces.2014.43035

    Article  CAS  Google Scholar 

  159. Feng Chin Wu, Tseng RL, Juang RS (2000) Comparative adsorption of metal and dye on flakeand bead-types of chitosans prepared from fishery wastes. J Hazard Mater B73:63–75

    Google Scholar 

  160. Adarsh KJDGM (2014) A Comparative study on metal adsorption properties of different forms of chitosan. Int J Innovative Res Sci Eng Technol 3(2):9609–9617

    Google Scholar 

  161. Lei Li YL, Cao L, Yang C (2015) Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning. Carbohyd Polym 125:206–213. https://doi.org/10.1016/j.carbpol.2015.02.037

    Article  CAS  Google Scholar 

  162. Ke P, Zeng D, Xu K, Cui J, Li X, Wang G (2020) Preparation of quaternary ammonium salt-modified chitosan microspheres and their application in dyeing wastewater treatment. ACS Omega 5(38):24700–24707. https://doi.org/10.1021/acsomega.0c03274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ahamed ME, Mbianda XY, Mulaba-Bafubiandi AF, Marjanovic L (2013) Selective extraction of gold (III) from metal chloride mixtures using ethylenediamine N-(2-(1-imidazolyl) ethyl) chitosan ion-imprinted polymer. Hydrometallurgy 140:1–3. https://doi.org/10.1016/j.hydromet.2013.08.004

    Article  CAS  Google Scholar 

  164. Peng S, Hao K, Han F, Tang Z, Niu B, Zhang X, Wang Z, Hong S (2015) Enhanced removal of bisphenol-AF onto chitosan-modified zeolite by sodium cholate in aqueous solutions. Carbohydr Polym 130:364–371. https://doi.org/10.1016/j.carbpol.2015.05.019

    Article  CAS  PubMed  Google Scholar 

  165. Shajahan A, Shankar S, Sathiyaseelan A, Narayan KS, Narayanan V, Kaviyarasan V, Ignacimuthu S (2017) Comparative studies of chitosan and its nanoparticles for the adsorption efficiency of various dyes. Int J Biol Macromol 104(Pt B):1449–1458. https://doi.org/10.1016/j.ijbiomac.2017.05.128

    Article  CAS  PubMed  Google Scholar 

  166. Nayak V, Jyothi MS, Balakrishna RG, Padaki M, Ismail AF (2015) Preparation and characterization of chitosan thin films on mixed-matrix membranes for complete removal of chromium. Chemistryopen 4(3):278–287. https://doi.org/10.1002/open.201402133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu X, Cheng Z, Ma W (2009) Removal of copper by modified chitosan adsorptive membrane. Front Chem Eng China 3(1):102–106. https://doi.org/10.1007/s11705-009-0123-7

    Article  CAS  Google Scholar 

  168. He YQ, Zheng T, Hao LL, Wang P (2013) Sorption of Cr(VI) from wastewater using modified chitosan. Adv Mater Res 777:106–111

    Article  Google Scholar 

  169. Vilela PB, Dalalibera A, Duminelli EC, Becegato VA, Paulino AT (2019) Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel. Environ Sci Pollut Res Int 26(28):28481–28489. https://doi.org/10.1007/s11356-018-3208-3

    Article  CAS  PubMed  Google Scholar 

  170. Darjito Darjito DP, Ningsih R (2014) The adsorption of Cr(VI) ions using chitosan-alumina adsorbent. J Pure Appl Chem Res 3(3):53–61

    Article  Google Scholar 

  171. Chanil J, Jiyong H, Jonghun H, Namguk H, Sung-Jae L, Jeill O, Jaena R, Yeomin Y (2013) Hexavalent chromium removal by various adsorbents: powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Sep Purif Technol 106:63–71. https://doi.org/10.1016/j.seppur.2012.12.028

    Article  CAS  Google Scholar 

  172. Elwakeel KZ, Atia AA, Guibal E (2014) Fast removal of uranium from aqueous solutions using tetraethylenepentamine modified magnetic chitosan resin. Bioresour Technol 160:107–114. https://doi.org/10.1016/j.biortech.2014.01.037

    Article  CAS  PubMed  Google Scholar 

  173. Laysandra L, Ondang IJ, Ju YH, Ariandini BH, Mariska A, Soetaredjo FE, Putro JN, Santoso SP, Darsono FL, Ismadji S (2019) Highly adsorptive chitosan/saponin-bentonite composite film for removal of methyl orange and Cr(VI). Environ Sci Pollut Res Int 26(5):5020–5037. https://doi.org/10.1007/s11356-018-4035-2

    Article  CAS  PubMed  Google Scholar 

  174. Zhu MX, Ding KY, Xu SH, Jiang X (2009) Adsorption of phosphate on hydroxyaluminum- and hydroxyiron-montmorillonite complexes. J Hazard Mater 165(1–3):645–651. https://doi.org/10.1016/j.jhazmat.2008.10.035

    Article  CAS  PubMed  Google Scholar 

  175. Xu H, Wu L, Shi T, Liu W, Qi S (2014) Adsorption of acid fuchsin onto LTA-type zeolite derived from fly ash. Sci China Technol Sci 57(6):1127–1134. https://doi.org/10.1007/s11431-014-5542-0

    Article  CAS  Google Scholar 

  176. Kołodyńska D (2010) The effect of the novel complexing agent in removal of heavy metal ions from waters and waste waters. Chem Eng J 165(3):835–845. https://doi.org/10.1016/j.cej.2010.10.028

    Article  CAS  Google Scholar 

  177. Bhattacharyya KG, Sen Gupta S (2006) Adsorption of chromium (VI) from water by clays. Ind Eng Chem Res 45(21):7232–7240

    Article  CAS  Google Scholar 

  178. Pengthamkeerati P, Satapanajaru T, Chatsatapattayakul N, Chairattanamanokorn P, Sananwai N (2010) Alkaline treatment of biomass fly ash for reactive dye removal from aqueous solution. Desalination 261(1–2):34–40. https://doi.org/10.1016/j.desal.2010.05.050

    Article  CAS  Google Scholar 

  179. Soltani H, Belmokhtar A, Zeggai FZ, Benyoucef A, Bousalem S, Bachari K (2019) Copper(II) removal from aqueous solutions by PANI-clay hybrid material: fabrication, characterization, adsorption and kinetics study. J Inorg Organomet Polym Mater 29(3):841–850. https://doi.org/10.1007/s10904-018-01058-z

    Article  CAS  Google Scholar 

  180. Feng Q, Wu D, Zhao Y, Wei A, Wei Q, Fong H (2018) Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water. J Hazard Mater 344:819–828. https://doi.org/10.1016/j.jhazmat.2017.11.035

    Article  CAS  PubMed  Google Scholar 

  181. Ma YX, Xing D, Shao WJ, Du XY, La PQ (2017) Preparation of polyamidoamine dendrimers functionalized magnetic graphene oxide for the adsorption of Hg(II) in aqueous solution. J Colloid Interface Sci 505:352–363. https://doi.org/10.1016/j.jcis.2017.05.104

    Article  CAS  PubMed  Google Scholar 

  182. Aydın YA, Aksoy ND (2009) Adsorption of chromium on chitosan: optimization, kinetics and thermodynamics. Chem Eng J 151(1–3):188–94

    Article  Google Scholar 

  183. Chutia P, Kato S, Kojima T, Satokawa S (2009) Arsenic adsorption from aqueous solution on synthetic zeolites. J Hazard Mater 162(1):440–447. https://doi.org/10.1016/j.jhazmat.2008.05.061

    Article  CAS  PubMed  Google Scholar 

  184. Chauhan D, Jaiswal M, Sankararamakrishnan N (2012) Removal of cadmium and hexavalent chromium from electroplating waste water using thiocarbamoyl chitosan. Carbohyd Polym 88(2):670–675. https://doi.org/10.1016/j.carbpol.2012.01.014

    Article  CAS  Google Scholar 

  185. Zhang T, Zhai X, Zeng M (2016) Application of chitosan in hydrometallurgy and environmental protection. Science Press, China

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51774078, 51874078, U1702253, U1508217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-an Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xq., Zhao, Xx., Liu, Y. et al. Review on preparation and adsorption properties of chitosan and chitosan composites. Polym. Bull. 79, 2633–2665 (2022). https://doi.org/10.1007/s00289-021-03626-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03626-9

Keywords

Navigation