Skip to main content
Log in

Antibacterial nanocomposite films of poly(vinyl alcohol) modified with zinc oxide-doped multiwalled carbon nanotubes as food packaging

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(vinyl alcohol) (PVA) is a synthetic and promising film-forming polymer that is usually used in packaging applications. In this study, PVA nanocomposite films with varying amounts of zinc oxide-doped multiwalled carbon nanotubes (MWCNTs-ZnO) were prepared. The tensile strength of the nanocomposite films was 116% higher than that of the PVA film. The thermal stability, water vapor transmission rate, hydrophobicity, and antibacterial activity of the nanocomposite films were better than those of pure PVA. Tests on water loss in vegetables at room temperature revealed that the vegetable wrapped in packaging films could keep more water for more than 4 days. Tests on the shelf life of chicken meat packed in films suggested that the growth of natural microorganisms in raw chicken kept in the preservation storage of the refrigerator could be inhibited for at least 36 h. The findings of this study indicated that nanocomposite MWCNTs-ZnO/PVA films with good transparency had great potential applications in food packaging.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lara BRB, Araújo ACMA, Dias MV et al (2019) Morphological, mechanical and physical properties of new whey protein isolate/ polyvinyl alcohol blends for food flexible packaging. Food Packag Shelf Life 19:16–23

    Article  Google Scholar 

  2. Xiao W, Sun Z, Liu J, Dong J (2018) Study of the influence of preparation conditions of γ-PGA ester as a food packaging material on the biodegradation performance. In: Zhao P, Ouyang Y, Xu M, Yang L, Ren Y (eds) Applied sciences in graphic communication and packaging. Lecture notes in electrical engineering, vol 477. Springer, Singapore. https://doi.org/10.1007/978-981-10-7629-9_98

  3. Marsh K, Bugusu B (2007) Food packaging-roles, materials, and environmental issues. J Food Sci 72:R39–R55

    Article  CAS  PubMed  Google Scholar 

  4. Setiawan AH, Aulia F (2017) Development of more friendly food packaging materials base on polypropylene through blending with polylacticacid. AIP Conf Proc 1803(1):020039

    Article  Google Scholar 

  5. Chetouani A, Elkolli M, Bounekhel M, Benachour D (2017) Chitosan/oxidized pectin/PVA blend film: mechanical and biological properties. Polym Bull 74:4297–4310

    Article  CAS  Google Scholar 

  6. Yun Y-H, Yoon S-D (2010) Effect of amylose contents of starches on physical properties and biodegradability of starch/PVA-blended films. Polym Bull 64:553–568

    Article  CAS  Google Scholar 

  7. Avella M, De Vlieger JJ, Errico ME et al (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474

    Article  CAS  Google Scholar 

  8. Septiani NLW, Yuliarto B, Iqbal M et al (2015) The methanol response sensing properties using MWCNT-ZnO composite. Adv Mater Res 1112:116–119

    Article  Google Scholar 

  9. Kotsilkov S, Ivanov E, Vitanov N (2018) Release of graphene and carbon nanotubes from biodegradable poly(lactic acid) films during degradation and combustion: risk associated with the end-of-life of nanocomposite food packaging materials. Materials 11(12):2346

    Article  CAS  PubMed Central  Google Scholar 

  10. Manohara SR, Samal SS, Rudreshappa GE (2016) Humidity sensing properties of multiwalled carbon nanotubePolyvinyl alcohol nanocomposite films. Nanosci Nanotechnol-Asia 6:128–134

    Article  CAS  Google Scholar 

  11. Yee MJ, Mubarak NM, Khalid M et al (2018) Synthesis of polyvinyl alcohol (PVA) infiltrated MWCNTs buckypaper for strain sensing application. Sci Rep 8:1–16

    Article  CAS  Google Scholar 

  12. Huang D, Wang A (2013) Non-covalently functionalized multiwalled carbon nanotubes by chitosan and their synergistic reinforcing effects in PVA films. RSC Adv 3:1210–1216

    Article  CAS  Google Scholar 

  13. Tudorachi N, Cascaval C, Rusu M, Pruteanu M (2000) Testing of polyvinyl alcohol and starch mixtures as biodegradable polymeric materials. Polym Test 19:785–799

    Article  CAS  Google Scholar 

  14. Kanatt SR, Rao MS, Chawla SP, Sharma A (2012) Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocoll 29:290–297

    Article  CAS  Google Scholar 

  15. Millon LE, Wan WK (2006) The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res Part B Appl Biomater 79B:245–253

    Article  CAS  Google Scholar 

  16. Pal K, Banthia AK, Majumdar DK (2007) Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. Aaps PharmSciTech 8:E142–E146

    Article  PubMed Central  Google Scholar 

  17. Tsou C-H, Lee H-T, Hung W-S et al (2016) Synthesis and properties of antibacterial polyurethane with novel Bis (3-pyridinemethanol) silver chain extender. Polymer 85:96–105

    Article  CAS  Google Scholar 

  18. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76

    Article  CAS  PubMed  Google Scholar 

  19. Tsou C-H, Lee H-T, Hung W-S et al (2017) Effects of different metals on the synthesis and properties of waterborne polyurethane composites containing pyridyl units. Polym Bull 74:1121–1143

    Article  CAS  Google Scholar 

  20. Azizi-Lalabadi M, Ehsani A, Ghanbarzadeh B, Divband B (2020) Polyvinyl alcohol/gelatin nanocomposite containing ZnO, TiO2 or ZnO/TiO2 nanoparticles doped on 4A zeolite: microbial and sensory qualities of packaged white shrimp during refrigeration. Int J Food Microbiol 312:1–10

    Article  CAS  Google Scholar 

  21. Amin KM, Partila AM, Abd El-Rehim HA, Deghiedy NM (2020) Antimicrobial ZnO nanoparticle-doped polyvinyl alcohol/pluronic blends as active food packaging films. Part Part Syst Charact 37:2000006

    Article  CAS  Google Scholar 

  22. Wyser Y, Adams M, Avella M et al (2016) Outlook and challenges of nanotechnologies for food packaging. Packag Technol Sci 29:615–648

    Article  CAS  Google Scholar 

  23. Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2011) Effect of nanocomposite packaging containing Ag and ZnO on inactivation of lactobacillus plantarum in orange juice. Food Control 22:408–413

    Article  CAS  Google Scholar 

  24. Panea B, Ripoll G, González J et al (2014) Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. J Food Eng 123:104–112

    Article  CAS  Google Scholar 

  25. Espitia PJP, Soares NDFF, dos Reis-Coimbra JS et al (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464

    Article  CAS  Google Scholar 

  26. EC (2016) Commission Regulation (EU) 2016/1416 of 24 August 2016 amending and correcting Regulation (EU) No 10/2011 on plastic materials and articles intended to come into contact with food (Text with EEA relevance). Official Journal of the Eur Union L230:22–42

    Google Scholar 

  27. Garcia CV, Shin GH, Kim JT (2018) Metal oxide-based nanocomposites in food packaging: applications, migration, and regulations. Trends Food Sci Technol 82:21–31

    Article  CAS  Google Scholar 

  28. Abedi A, Bakhshandeh B, Babaie A et al (2021) Concurrent application of conductive biopolymeric chitosan/polyvinyl alcohol/MWCNTs nanofibers, intracellular signaling manipulating molecules and electrical stimulation for more effective cardiac tissue engineering. Mater Chem Phys 258:123842

    Article  CAS  Google Scholar 

  29. Khorasani MT, Joorabloo A, Moghaddam A et al (2018) Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int J Biol Macromol 114:1203–1215

    Article  CAS  PubMed  Google Scholar 

  30. Tsou C-H, Yao W-H, Lu Y-C et al (2017) Antibacterial property and cytotoxicity of a poly(lactic acid)/nanosilver-doped multiwall carbon nanotube nanocomposite. Polymers 9:100

    Article  PubMed Central  CAS  Google Scholar 

  31. Fan JH (2020) Application of DSC method in measuring the glass transition temperature of polyvinyl alcohol. Weilun Commun 40:56–59

    Google Scholar 

  32. Nurul Syahida S, Ismail-Fitry MR, Ainun ZMA, Nur Hanani ZA (2020) Effects of palm wax on the physical, mechanical and water barrier properties of fish gelatin films for food packaging application. Food Packag Shelf Life 23:100437

    Article  Google Scholar 

  33. Tsou C-H, Wu C-S, Hung W-S et al (2019) Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder. Polymer 160:265–271

    Article  CAS  Google Scholar 

  34. Tsou CH, Yao WH, Hung WS et al (2018) Innovative plasma process of grafting methyl diallyl ammonium salt onto polypropylene to impart antibacterial and hydrophilic surface properties. Ind Eng Chem Res 57:2537–2545

    Article  CAS  Google Scholar 

  35. Wang W, Yu Z, Alsammarraie FK et al (2020) Properties and antimicrobial activity of polyvinyl alcohol-modified bacterial nanocellulose packaging films incorporated with silver nanoparticles. Food Hydrocoll 100:105411

    Article  CAS  Google Scholar 

  36. Zheng Q, Javadi A, Sabo R et al (2013) Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)–multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties. RSC Adv 3:20816–20823

    Article  CAS  Google Scholar 

  37. Li B, Liu T, Wang Y, Wang Z (2012) ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. J Colloid Interface Sci 377:114–121

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y-W, Cao A, Jiang Y et al (2014) Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl Mater Interfaces 6:2791–2798

    Article  CAS  PubMed  Google Scholar 

  39. Yao Y, De GMR, Duan H et al (2020) Infusing high-density polyethylene with graphene-zinc oxide to produce antibacterial nanocomposites with improved properties. Chin J Polym Sci 38:898–907

    Article  CAS  Google Scholar 

  40. Kim Y, Kim M, Choi JK, Shim SE (2015) Mechanical and electrical properties of PVA nanocomposite containing sonochemically modified MWCNT in water. Polym Korea 39:136–143

    Article  CAS  Google Scholar 

  41. Yeh J, Wu T, Lai Y et al (2011) Ultradrawing properties of ultrahigh-molecular weight polyethylene/functionalized carbon nanotube fibers and transmittance properties of their gel solutions. Polym Eng Sci 51:2552–2563

    Article  CAS  Google Scholar 

  42. Abdolrahimi M, Seifi M, Ramezanzadeh MH (2018) Study the effect of acetic acid on structural, optical and mechanical properties of PVA/chitosan/MWCNT films. Chin J Phys 56:221–230

    Article  CAS  Google Scholar 

  43. Das SK, Hasan M, Islam JMM et al (2017) Characterization of solution casting derived carbon nanotube reinforced poly (vinyl alcohol) thin films. Int J Plast Technol 21:338–350

    Article  CAS  Google Scholar 

  44. Wang J, Gao C, Zhang Y, Wan Y (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218

    Article  CAS  Google Scholar 

  45. GeorgeRamanaBawa-Siddaramaiah JKVAS (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48:50–57

    Article  CAS  Google Scholar 

  46. Gong X, Tang CY, Pan L et al (2014) Characterization of poly (vinyl alcohol)(PVA)/ZnO nanocomposites prepared by a one-pot method. Compos Part B Eng 60:144–149

    Article  CAS  Google Scholar 

  47. Bonelli N, Poggi G, Chelazzi D et al (2019) Poly(vinyl alcohol)/poly(vinyl pyrrolidone) hydrogels for the cleaning of art. J Colloid Interface Sci 536:339–348

    Article  CAS  PubMed  Google Scholar 

  48. Wen Y-H, De Guzman MR, Lin X et al (2020) Antibacterial nanocomposites of polypropylene modified with silver-decorated multiwalled carbon nanotubes. NANO 15:2050112–1-2050112–15

    Article  Google Scholar 

  49. Rhim J, Lee S, Hong S (2011) Preparation and characterization of agar/clay nanocomposite films: the effect of clay type. J Food Sci 76:N40–N48

    Article  CAS  PubMed  Google Scholar 

  50. Kavoosi G, Dadfar SMM, Dadfar SMA et al (2014) Investigation of gelatin/multi-walled carbon nanotube nanocomposite films as packaging materials. Food Sci Nutr 2:65–73

    Article  CAS  PubMed  Google Scholar 

  51. Sugumaran S, Bellan CS, Muthu D et al (2015) Novel hybrid PVA–InZnO transparent thin films and sandwich capacitor structure by dip coating method: preparation and characterizations. RSC Adv 5:10599–10610

    Article  CAS  Google Scholar 

  52. Hmar JJL, Majumder T, Roy JN, Mondal SP (2015) Flexible, transparent, high dielectric and photoconductive thin films using ZnO nanosheets-multi-walled carbon nanotube-polymer nanocomposites. J Alloys Compd 651:82–90

    Article  CAS  Google Scholar 

  53. Gharoy Ahangar E, Abbaspour-Fard MH, Shahtahmassebi N et al (2015) Preparation and characterization of PVA/ZnO nanocomposite. J Food Process Preserv 39:1442–1451

    Article  CAS  Google Scholar 

  54. Sirelkhatim A, Mahmud S, Seeni A et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242

    Article  CAS  Google Scholar 

  55. Bolton DJ, Meredith H, Walsh D, McDowell DA (2014) The effect of chemical treatments in laboratory and broiler plant studies on the microbial status and shelf-life of poultry. Food Control 36:230–237

    Article  CAS  Google Scholar 

  56. Yasmine P (2009) Nutrient values for Australian and overseas chicken meat. Nutr Food Sci 39:685–693

    Article  Google Scholar 

  57. Demirezen D, Uruc K (2006) Comparative study of trace elements in certain fish, meat and meat products. Meat Sci 74:255–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the following organizations: Wuliangye Group Co. Ltd. (CXY2019ZR001); Sichuan Province Science and Technology Support Program (2019JDRC0029); Zigong City Science and Technology (2017XC16; 2019CXRC01; 2020YGJC13); Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province (2017CL03; 2019CL05; 2018CL08; 2018CL07; 2016CL10); Opening Project of Sichuan Province, the Foundation of Introduced Talent of Sichuan University of Science and Engineering (2017RCL31; 2017RCL36; 2017RCL16; 2019RC05; 2019RC07; 2014RC31; 2020RC16); the Opening Project of Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities (2020JXY04). Appreciation is also extended to Sichuan Jinxiang Sairui Chemical Co. Ltd; Apex Nanotek Co. Ltd.; Ratchadapisek Sompote Fund for Postdoctoral Fellowship (Chulalongkorn University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Hui Tsou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 506 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, YH., Tsou, CH., de Guzman, M.R. et al. Antibacterial nanocomposite films of poly(vinyl alcohol) modified with zinc oxide-doped multiwalled carbon nanotubes as food packaging. Polym. Bull. 79, 3847–3866 (2022). https://doi.org/10.1007/s00289-021-03666-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03666-1

Keywords

Navigation