Skip to main content

Advertisement

Log in

Shape memory polymer nanocomposite: a review on structure–property relationship

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Shape memory polymers (SMPs) are among the main groups of smart materials widely used in smart textiles and apparels, intelligent medical devices, sensors & actuators, high-performance water–vapor permeability materials, morphing applications, and self-deployable structures in spacecraft. However, SMPs have some limitations: comparatively low tensile strength and stiffness, relatively low recovery stress, low thermal conductivity, inertness to electrical, light, and electromagnetic stimuli accompanied by slow responsibility and low recovery time during actuation, which often limits SMPs potential applications in high-performance field. In recent years, researchers have focused more on shape memory polymer nanocomposites (SMPNCs) than the classical composites to overcome this limitation of the SMPs, as nanofillers have a large surface area and strong interaction with polymers. This review thoroughly examines the progress in SMPNCs, including the very recent past, with a particular focus on their structure–property relationship. Considering all the SMPs, the most commonly used SMPs like polyurethane, epoxy, polycaprolactam, polylactic acid, and polyvinyl alcohol along with carbon-based (i.e., CNTs, carbon black, graphene oxide, graphene nanoplatelets, graphene quantum dots, nano-diamonds), metal oxide-based (i.e., Fe3O4, TiO2), cellulose-based (i.e., cellulose nanocrystals, nano-cellulose gel), and other nanomaterials like nano-clay, TiN, AuNRs, organic nanoparticles, silica, sepiolite, silsesquioxane, and hydroxyapatite nanofillers are discussed. The future development of SMPNCs may enhance their performance under thermal, electric, light (UV/NIR), magnetic, and solvent (pH/water) stimuli, which may open the door to more advanced applications in the field of aerospace, robotics, sensing and actuation, and biomedical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Tao X (2001) Smart fibres, fabrics and clothing. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

  2. Sun L, Huang WM, Ding Z et al (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640. https://doi.org/10.1016/j.matdes.2011.04.065

    Article  CAS  Google Scholar 

  3. Arun DI, Chakravarthy P, Arockiakumar RSB (2018) Shape memory materials, 1st edn. CRC Press, Florida

    Book  Google Scholar 

  4. Buehler WJ, Gilfrich JV, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34:1475–1477. https://doi.org/10.1063/1.1729603

    Article  CAS  Google Scholar 

  5. Dhanasekaran R, Sreenatha Reddy S, Girish Kumar B, Anirudh AS (2018) Shape memory materials for bio-medical and aerospace applications. Mater Today Proc 5:21427–21435. https://doi.org/10.1016/j.matpr.2018.6.551

    Article  CAS  Google Scholar 

  6. Hornbogen E (2006) Comparison of shape memory metals and polymers. Adv Eng Mater 8:101–106. https://doi.org/10.1002/adem.200500193

    Article  CAS  Google Scholar 

  7. Uo M, Watari F, Yokoyama A et al (2001) Tissue reaction around metal implants observed by X-ray scanning analytical microscopy. Biomaterials 22:677–685. https://doi.org/10.1016/S0142-9612(00)00230-1

    Article  CAS  PubMed  Google Scholar 

  8. Uchino K (2016) Antiferroelectric shape memory ceramics. Actuators. https://doi.org/10.3390/act5020011

    Article  Google Scholar 

  9. Ji FL, Zhu Y, Hu JL et al (2006) Smart polymer fibers with shape memory effect. Smart Mater Struct 15:1547–1554. https://doi.org/10.1088/0964-1726/15/6/006

    Article  CAS  Google Scholar 

  10. Liu Y, Gall K, Dunn ML, McCluskey P (2004) Thermomechanics of shape memory polymer nanocomposites. Mech Mater 36:929–940. https://doi.org/10.1016/j.mechmat.2003.08.012

    Article  Google Scholar 

  11. Mohr R, Kratz K, Weigel T et al (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci U S A 103:3540–3545. https://doi.org/10.1073/pnas.0600079103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27:1168–1172. https://doi.org/10.1002/marc.200600225

    Article  CAS  Google Scholar 

  13. Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26:412–416. https://doi.org/10.1002/marc.200400492

    Article  CAS  Google Scholar 

  14. Sahoo NG, Jung YC, Cho JW (2007) Electroactive shape memory effect of polyurethane composites filled with carbon nanotubes and conducting polymer. Mater Manuf Process 22:419–423. https://doi.org/10.1080/10426910701232857

    Article  CAS  Google Scholar 

  15. Han XJ, Dong ZQ, Fan MM et al (2012) PH-induced shape-memory polymers. Macromol Rapid Commun 33:1055–1060. https://doi.org/10.1002/marc.201200153

    Article  CAS  PubMed  Google Scholar 

  16. Yang B, Huang WM, Li C, Li L (2006) Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer (Guildf) 47:1348–1356. https://doi.org/10.1016/j.polymer.2005.12.051

    Article  CAS  Google Scholar 

  17. Huang WM, Yang B, An L et al (2005) Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl Phys Lett 86:1–3. https://doi.org/10.1063/1.1880448

    Article  CAS  Google Scholar 

  18. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676. https://doi.org/10.1126/science.1066102

    Article  PubMed  Google Scholar 

  19. Dong Z, Cao Y, Yuan Q et al (2013) Redox- and glucose-induced shape-memory polymers. Macromol Rapid Commun 34:867–872. https://doi.org/10.1002/marc.201300084

    Article  CAS  PubMed  Google Scholar 

  20. Buffington SL, Paul JE, Ali MM et al (2019) Enzymatically triggered shape memory polymers. Acta Biomater 84:88–97. https://doi.org/10.1016/j.actbio.2018.11.031

    Article  CAS  PubMed  Google Scholar 

  21. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer (Guildf) 54:2199–2221

    Article  CAS  Google Scholar 

  22. Hu J (2007) Shape memory polymers and textiles. Woodhead Punlishing Ltd., Cambridge

    Book  Google Scholar 

  23. Wache HM, Tartakowska DJ, Hentrich A, Wagner MH (2003) Development of a polymer stent with shape memory effect as a drug delivery system. J Mater Sci Mater Med 14:109–112. https://doi.org/10.1023/A:1022007510352

    Article  CAS  PubMed  Google Scholar 

  24. Lan X, Huang WM, Liu N et al (2008) (2008) Improving the electrical conductivity by forming Ni powder chains in a shape-memory polymer filled with carbon black. Electroact Polym Actuators Devices 6927:692717. https://doi.org/10.1117/12.776546

    Article  CAS  Google Scholar 

  25. Leng J, Lu H, Liu Y (2008) Du S (2008) Conductive nanoparticles in electro activated shape memory polymer sensor and actuator. Nanosensors Microsens Bio-Systems 6931:693109. https://doi.org/10.1117/12.775743

    Article  CAS  Google Scholar 

  26. Mondal S, Hu JL, Yong Z (2006) Free volume and water vapor permeability of dense segmented polyurethane membrane. J Memb Sci 280:427–432. https://doi.org/10.1016/j.memsci.2006.01.047

    Article  CAS  Google Scholar 

  27. Liu Y, Du H, Liu L, Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct. https://doi.org/10.1088/0964-1726/23/2/023001

    Article  Google Scholar 

  28. Barkoula NM, Alcock B, Cabrera NO, Peijs T (2008) Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polym Polym Compos 16:101–113

    CAS  Google Scholar 

  29. Liu T, Zhou T, Yao Y et al (2017) Stimulus methods of multi-functional shape memory polymer nanocomposites: a review. Compos Part A Appl Sci Manuf 100:20–30. https://doi.org/10.1016/j.compositesa.2017.04.022

    Article  CAS  Google Scholar 

  30. Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos Part A Appl Sci Manuf 40:1661–1672. https://doi.org/10.1016/j.compositesa.2009.08.011

    Article  CAS  Google Scholar 

  31. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: Stimulus methods and applications. Prog Mater Sci 56:1077–1135. https://doi.org/10.1016/j.pmatsci.2011.03.001

    Article  CAS  Google Scholar 

  32. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer (Guildf) 54:2199–2221. https://doi.org/10.1016/j.polymer.2013.02.023

    Article  CAS  Google Scholar 

  33. Wang W, Liu Y, Leng J (2016) Recent developments in shape memory polymer nanocomposites: actuation methods and mechanisms. Coord Chem Rev 320–321:38–52. https://doi.org/10.1016/j.ccr.2016.03.007

    Article  CAS  Google Scholar 

  34. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763. https://doi.org/10.1016/j.progpolymsci.2012.06.001

    Article  CAS  Google Scholar 

  35. Gall K, Dunn ML, Liu Y et al (2002) Shape memory polymer nanocomposites. Acta Mater 50:5115–5126. https://doi.org/10.1016/S1359-6454(02)00368-3

    Article  CAS  Google Scholar 

  36. Al LBVET, Vernon B, Vernon HM (1941) Process of manufacturing articles of thermoplastic synthetic resin

  37. Heilig ML (1994) Polyethylene product and process. ACM SIGGRAPH Comput Graph 28:131–134

    Article  Google Scholar 

  38. Liang C, Rogers CA, Malafeew E (1997) Investigation of shape memory polymers and their hybrid composites. J Intell Mater Syst Struct 8:380–386. https://doi.org/10.1177/1045389X9700800411

    Article  CAS  Google Scholar 

  39. Rousseau IA, Mather PT (2003) Shape memory effect exhibited by smectic-C liquid crystalline elastomers. J Am Chem Soc 125:15300–15301. https://doi.org/10.1021/ja039001s

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79–120. https://doi.org/10.1016/j.progpolymsci.2015.04.001

    Article  CAS  Google Scholar 

  41. Koerner H, Price G, Pearce NA et al (2004) Remotely actuated polymer nanocomposites: stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3:115–120. https://doi.org/10.1038/nmat1059

    Article  CAS  PubMed  Google Scholar 

  42. Dong Y, Ni QQ, Fu Y (2015) Preparation and characterization of water-borne epoxy shape memory composites containing silica. Compos Part A Appl Sci Manuf 72:1–10. https://doi.org/10.1016/j.compositesa.2015.01.018

    Article  CAS  Google Scholar 

  43. Yu K, McClung AJW, Tandon GP et al (2014) A thermomechanical constitutive model for an epoxy based shape memory polymer and its parameter identifications. Mech Time-Dependent Mater 18:453–474. https://doi.org/10.1007/s11043-014-9237-5

    Article  CAS  Google Scholar 

  44. Ji FL, Hu JL, Han JP (2011) Shape memory polyurethane-ureas based on isophorone diisocyanate. High Perform Polym 23:177–187. https://doi.org/10.1177/0954008311398323

    Article  CAS  Google Scholar 

  45. Yakacki CM, Shandas R, Safranski D et al (2008) Strong, tailored, biocompatible shape-memory polymer networks. Adv Funct Mater 18:2428–2435. https://doi.org/10.1002/adfm.200701049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Noguchi H, Michinobu T, Fujii N, Funahashi M (2008) Side chain liquid crystal poly ( fumarate ) s bearing tolane-based mesogens. J Polym Sci Part A Polym Chem 46:5101–5114. https://doi.org/10.1002/pola

    Article  CAS  Google Scholar 

  47. Ratna D, Karger-Kocsis J (2011) Shape memory polymer system of semi-interpenetrating network structure composed of crosslinked poly (methyl methacrylate) and poly (ethylene oxide). Polymer (Guildf) 52:1063–1070. https://doi.org/10.1016/j.polymer.2010.12.054

    Article  CAS  Google Scholar 

  48. Kurahashi E, Sugimoto H, Nakanishi E et al (2012) Shape memory properties of polyurethane/poly(oxyethylene) blends. Soft Matter 8:496–503. https://doi.org/10.1039/c1sm06585h

    Article  CAS  Google Scholar 

  49. Ivens J, Urbanus M, De Smet C (2011) Shape recovery in a thermoset shape memory polymer and its fabric-reinforced composites. Express Polym Lett 5:254–261. https://doi.org/10.3144/expresspolymlett.2011.25

    Article  CAS  Google Scholar 

  50. Li J, Viveros JA, Wrue MH, Anthamatten M (2007) Shape-memory effects in polymer networks containing reversibly associating side-groups. Adv Mater 19:2851–2855. https://doi.org/10.1002/adma.200602260

    Article  CAS  Google Scholar 

  51. Uchida M, Kurosawa M, Osada Y (1995) Swelling process and order-disorder transition of hydrogel containing hydrophobic ionizable groups. Macromolecules 28:4583–4586. https://doi.org/10.1021/ma00117a031

    Article  CAS  Google Scholar 

  52. Zhou X, Hu B, Xiao WQ et al (2018) Morphology and properties of shape memory thermoplastic polyurethane composites incorporating graphene-montmorillonite hybrids. J Appl Polym Sci 135:1–9. https://doi.org/10.1002/app.46149

    Article  CAS  Google Scholar 

  53. Bai Y, Chen Y, Wang Q, Wang T (2014) Poly(vinyl butyral) based polymer networks with dual-responsive shape memory and self-healing properties. J Mater Chem A 2:9169–9177. https://doi.org/10.1039/c4ta00856a

    Article  CAS  Google Scholar 

  54. Zhang Q, Wei H, Liu Y et al (2016) Triple-shape memory effects of bismaleimide based thermosetting polymer networks prepared via heterogeneous crosslinking structures. RSC Adv 6:10233–10241. https://doi.org/10.1039/c5ra24247a

    Article  CAS  Google Scholar 

  55. Ban J, Zhu L, Chen S, Wang Y (2016) The effect of 4-octyldecyloxybenzoic acid on liquid-crystalline polyurethane composites with triple-shape memory and self-healing properties. Materials (Basel). https://doi.org/10.3390/ma9090792

    Article  PubMed Central  Google Scholar 

  56. Li MQ, Song F, Chen L et al (2016) Flexible material based on poly(lactic acid) and liquid crystal with multishape memory effects. ACS Sustain Chem Eng 4:3820–3829. https://doi.org/10.1021/acssuschemeng.6b00582

    Article  CAS  Google Scholar 

  57. Qin H, Mather PT (2009) Combined one-way and two-way shape memory in a glass-forming nematic network. Macromolecules 42:273–280. https://doi.org/10.1021/ma8022926

    Article  CAS  Google Scholar 

  58. Xie T (2010) Tunable polymer multi-shape memory effect. Nature 464:267–270. https://doi.org/10.1038/nature08863

    Article  CAS  PubMed  Google Scholar 

  59. Xie T, Xiao X, Cheng YT (2009) Revealing triple-shape memory effect by polymer bilayers. Macromol Rapid Commun 30:1823–1827. https://doi.org/10.1002/marc.200900409

    Article  CAS  PubMed  Google Scholar 

  60. Bae CY, Park JH, Kim EY et al (2011) Organic-inorganic nanocomposite bilayers with triple shape memory effect. J Mater Chem 21:11288–11295. https://doi.org/10.1039/c1jm10722d

    Article  CAS  Google Scholar 

  61. Akindoyo JO, Beg MDH, Ghazali S et al (2016) Polyurethane types, synthesis and applications-a review. RSC Adv 6:114453–114482. https://doi.org/10.1039/c6ra14525f

    Article  CAS  Google Scholar 

  62. Cho JW, Jung YC, Chung YC, Chun BC (2004) Improved mechanical properties of shape-memory polyurethane block copolymers through the control of the soft-segment arrangement. J Appl Polym Sci 93:2410–2415. https://doi.org/10.1002/app.20747

    Article  CAS  Google Scholar 

  63. Yilgör I, Yilgör E, Wilkes GL (2015) Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: a comprehensive review. Polymer (Guildf) 58:A1–A36. https://doi.org/10.1016/j.polymer.2014.12.014

    Article  CAS  Google Scholar 

  64. Auad ML, Richardson T, Hicks M et al (2012) Shape memory segmented polyurethanes: dependence of behavior on nanocellulose addition and testing conditions. Polym Int 61:321–327. https://doi.org/10.1002/pi.3193

    Article  CAS  Google Scholar 

  65. Lotfi Mayan Sofla R, Rezaei M, Babaie A, Nasiri M (2019) Preparation of electroactive shape memory polyurethane/graphene nanocomposites and investigation of relationship between rheology, morphology and electrical properties. Compos Part B Eng 175:107090. https://doi.org/10.1016/j.compositesb.2019.107090

    Article  CAS  Google Scholar 

  66. Pergal MV, Nestorov J, Tovilović G et al (2014) Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): assessment of biocompatibility. J Biomed Mater Res - Part A 102:3951–3964. https://doi.org/10.1002/jbm.a.35071

    Article  CAS  Google Scholar 

  67. Nemati H, Roghani-Mamaqani H, Salami-Kalajahi M (2019) Preparation of polyurethane-acrylate and silica nanoparticle hybrid composites by a free radical network formation method. Bull Mater Sci. https://doi.org/10.1007/s12034-019-1917-y

    Article  Google Scholar 

  68. Joki-Korpela F, Pakkanen TT (2011) Incorporation of polydimethylsiloxane into polyurethanes and characterization of copolymers. Eur Polym J 47:1694–1708. https://doi.org/10.1016/j.eurpolymj.2011.06.006

    Article  CAS  Google Scholar 

  69. Lee JH, Ju YM, Kim DM (2000) Platelet adhesion onto segmented polyurethane film surfaces modified by addition and crosslinking of PEO-containing block copolymers. Biomaterials 21:683–691. https://doi.org/10.1016/S0142-9612(99)00197-0

    Article  CAS  PubMed  Google Scholar 

  70. Rahman MM, Do KH (2007) Characterization of waterborne polyurethane adhesives containing different soft segments. J Adhes Sci Technol 21:81–96. https://doi.org/10.1163/156856107779976088

    Article  CAS  Google Scholar 

  71. Ohki T, Ni QQ, Ohsako N, Iwamoto M (2004) Mechanical and shape memory behavior of composites with shape memory polymer. Compos Part A Appl Sci Manuf 35:1065–1073. https://doi.org/10.1016/j.compositesa.2004.03.001

    Article  CAS  Google Scholar 

  72. Huang WM, Ding Z, Wang CC et al (2010) Shape memory materials. Mater Today 13:54–61. https://doi.org/10.1016/S1369-7021(10)70128-0

    Article  CAS  Google Scholar 

  73. Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558. https://doi.org/10.1039/b615954k

    Article  CAS  Google Scholar 

  74. Fonseca MA, Abreu B, Gonçalves FAMM et al (2013) Shape memory polyurethanes reinforced with carbon nanotubes. Compos Struct 99:105–111. https://doi.org/10.1016/j.compstruct.2012.11.029

    Article  Google Scholar 

  75. Raja M, Ryu SH, Shanmugharaj AM (2014) Influence of surface modified multiwalled carbon nanotubes on the mechanical and electroactive shape memory properties of polyurethane (PU)/poly(vinylidene diflouride) (PVDF) composites. Colloids Surfaces A Physicochem Eng Asp 450:59–66. https://doi.org/10.1016/j.colsurfa.2014.03.008

    Article  CAS  Google Scholar 

  76. Gall K, Mikulas M, Munshi NA et al (2000) Carbon fiber reinforced shape memory polymer composites. J Intell Mater Syst Struct 11:877–886. https://doi.org/10.1106/EJGR-EWNM-6CLX-3X2M

    Article  CAS  Google Scholar 

  77. Lendlein A, Schmidt AM, Langer R (2001) AB-polymer networks based on oligo(ε-caprolactone) segments showing shape-menory properties. Proc Natl Acad Sci U S A 98:842–847. https://doi.org/10.1073/pnas.031571398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wei ZG, Sandstroröm R, Miyazaki S (1998) Review Shape-memory materials and hybrid composites for smart systems. J Mater Sci 33:3743–3762. https://doi.org/10.1023/A:1004692329247

    Article  CAS  Google Scholar 

  79. Sokolowski W, Metcalfe A, Hayashi S et al (2007) Medical applications of shape memory polymers. Biomed Mater. https://doi.org/10.1088/1748-6041/2/1/S04

    Article  PubMed  Google Scholar 

  80. Lu H, Yao Y, Huang WM et al (2014) Significantly improving infrared light-induced shape recovery behavior of shape memory polymeric nanocomposite via a synergistic effect of carbon nanotube and boron nitride. Compos Part B Eng 62:256–261. https://doi.org/10.1016/j.compositesb.2014.03.007

    Article  CAS  Google Scholar 

  81. Yu K, Liu Y, Leng J (2014) Shape memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Adv 4:2961–2968. https://doi.org/10.1039/c3ra43258k

    Article  CAS  Google Scholar 

  82. Zhang CS, Ni QQ, Fu SY, Kurashiki K (2007) Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer. Compos Sci Technol 67:2973–2980. https://doi.org/10.1016/j.compscitech.2007.05.011

    Article  CAS  Google Scholar 

  83. Kalita H, Karak N (2013) Hyperbranched polyurethane/Fe3O4 nanoparticles decorated multiwalled carbon nanotube thermosetting nanocomposites as microwave actuated shape memory materials. J Mater Res 28:2132–2141. https://doi.org/10.1557/jmr.2013.213

    Article  CAS  Google Scholar 

  84. Di Prima M, Gall K, McDowell DL et al (2010) Deformation of epoxy shape memory polymer foam. Part I: experiments and macroscale constitutive modeling. Mech Mater 42:304–314. https://doi.org/10.1016/j.mechmat.2009.11.001

    Article  Google Scholar 

  85. Zheng N, Fang G, Cao Z et al (2015) High strain epoxy shape memory polymer. Polym Chem 6:3046–3053. https://doi.org/10.1039/c5py00172b

    Article  CAS  Google Scholar 

  86. Wang W, Liu D, Liu Y et al (2015) Electrical actuation properties of reduced graphene oxide paper/epoxy-based shape memory composites. Compos Sci Technol 106:20–24. https://doi.org/10.1016/j.compscitech.2014.10.016

    Article  CAS  Google Scholar 

  87. Zhang F, Zhang Z, Liu Y et al (2015) Thermosetting epoxy reinforced shape memory composite microfiber membranes: fabrication, structure and properties. Compos Part A Appl Sci Manuf 76:54–61. https://doi.org/10.1016/j.compositesa.2015.05.004

    Article  CAS  Google Scholar 

  88. Rousseau IA, Xie T (2010) Shape memory epoxy: Composition, structure, properties and shape memory performances. J Mater Chem 20:3431–3441. https://doi.org/10.1039/b923394f

    Article  CAS  Google Scholar 

  89. Wei H, Yao Y, Liu Y, Leng J (2015) A dual-functional polymeric system combining shape memory with self-healing properties. Compos Part B Eng 83:7–13. https://doi.org/10.1016/j.compositesb.2015.08.019

    Article  CAS  Google Scholar 

  90. Zou Q, Ba L, Tan X et al (2016) Tunable shape memory properties of rigid–flexible epoxy networks. J Mater Sci 51:10596–10607. https://doi.org/10.1007/s10853-016-0281-1

    Article  CAS  Google Scholar 

  91. Mąka H, Spychaj T, Sikorski W (2014) Deep eutectic ionic liquids as epoxy resin curing agents. Int J Polym Anal Charact 19:682–692. https://doi.org/10.1080/1023666X.2014.953835

    Article  CAS  Google Scholar 

  92. Soares BG, Dahmouche K, Lima VD et al (2011) Characterization of nanostructured epoxy networks modified with isocyanate-terminated liquid polybutadiene. J Colloid Interface Sci 358:338–346. https://doi.org/10.1016/j.jcis.2011.03.030

    Article  CAS  PubMed  Google Scholar 

  93. Lendlein A, Schmidt AM, Schroeter M, Langer R (2005) Shape-memory polymer networks from oligo (ε-caprolactone) dimethacrylates. J Polym Sci Part A Polym Chem 43:1369–1381. https://doi.org/10.1002/pola.20598

    Article  CAS  Google Scholar 

  94. Zhu GM, Xu QY, Liang GZ, Zhou HF (2005) Shape-memory behaviors of sensitizing radiation crosslinked polycaprolactone with polyfunctional poly (ester acrylate). J Appl Polym Sci 95:634–639. https://doi.org/10.1002/app.20989

    Article  CAS  Google Scholar 

  95. Defize T, Riva R, Raquez JM et al (2011) Thermoreversibly crosslinked poly(ε-caprolactone) as recyclable shape-memory polymer network. Macromol Rapid Commun 32:1264–1269. https://doi.org/10.1002/marc.201100250

    Article  CAS  PubMed  Google Scholar 

  96. Mohan R, Subha J, Alam J (2018) Influence of multiwalled carbon nanotubes on biodegradable poly(lactic acid) nanocomposites for electroactive shape memory actuator. Adv Polym Technol 37:256–261. https://doi.org/10.1002/adv.21664

    Article  CAS  Google Scholar 

  97. Karamanlioglu M, Preziosi R, Robson GD (2017) Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): a review. Polym Degrad Stab 137:122–130. https://doi.org/10.1016/j.polymdegradstab.2017.01.009

    Article  CAS  Google Scholar 

  98. Nagarajan V, Mohanty AK, Misra M (2016) Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng 4:2899–2916. https://doi.org/10.1021/acssuschemeng.6b00321

    Article  CAS  Google Scholar 

  99. Li M-Q, Wu J-M, Song F et al (2019) Flexible and electro-induced shape memory Poly(Lactic Acid)-based material constructed by inserting a main-chain liquid crystalline and selective localization of carbon nanotubes. Compos Sci Technol 173:1–6. https://doi.org/10.1016/j.compscitech.2019.01.019

    Article  CAS  Google Scholar 

  100. Sabzi M, Babaahmadi M, Rahnama M (2017) Thermally and electrically triggered triple-shape memory behavior of poly(vinyl acetate)/poly(lactic acid) due to graphene-induced phase separation. ACS Appl Mater Interfaces 9:24061–24070. https://doi.org/10.1021/acsami.7b02259

    Article  CAS  PubMed  Google Scholar 

  101. Castillo RV, Müller AJ, Raquez JM, Dubois P (2010) Crystallization kinetics and morphology of biodegradable double crystalline PLLA- b -PCL diblock copolymers. Macromolecules 43:4149–4160. https://doi.org/10.1021/ma100201g

    Article  CAS  Google Scholar 

  102. Navarro-Baena I, Arrieta MP, Sonseca A et al (2015) Biodegradable nanocomposites based on poly(ester-urethane) and nanosized hydroxyapatite: plastificant and reinforcement effects. Polym Degrad Stab 121:171–179. https://doi.org/10.1016/j.polymdegradstab.2015.09.002

    Article  CAS  Google Scholar 

  103. Burgos N, Tolaguera D, Fiori S, Jiménez A (2014) Synthesis and characterization of lactic acid oligomers: evaluation of performance as poly(lactic acid) plasticizers. J Polym Environ 22:227–235. https://doi.org/10.1007/s10924-013-0628-5

    Article  CAS  Google Scholar 

  104. Hassouna F, Raquez JM, Addiego F et al (2011) New approach on the development of plasticized polylactide (PLA): grafting of poly(ethylene glycol) (PEG) via reactive extrusion. Eur Polym J 47:2134–2144. https://doi.org/10.1016/j.eurpolymj.2011.08.001

    Article  CAS  Google Scholar 

  105. Arrieta MP, Fortunati E, Dominici F et al (2015) Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohydr Polym 121:265–275. https://doi.org/10.1016/j.carbpol.2014.12.056

    Article  CAS  PubMed  Google Scholar 

  106. Ferri JM, Garcia-Garcia D, Sánchez-Nacher L et al (2016) The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydr Polym 147:60–68. https://doi.org/10.1016/j.carbpol.2016.03.082

    Article  CAS  PubMed  Google Scholar 

  107. Navarro-Baena I, Sessini V, Dominici F et al (2016) Design of biodegradable blends based on PLA and PCL: from morphological, thermal and mechanical studies to shape memory behavior. Polym Degrad Stab 132:97–108. https://doi.org/10.1016/j.polymdegradstab.2016.03.037

    Article  CAS  Google Scholar 

  108. Alam J, Alam M, Raja M et al (2014) MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour. Int J Mol Sci 15:19924–19937. https://doi.org/10.3390/ijms151119924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rasal RM, Janorkar AV, Hirt DE (2010) Poly (lactic acid) modifications. Prog Polym Sci 35:338–356. https://doi.org/10.1016/j.progpolymsci.2009.12.003

    Article  CAS  Google Scholar 

  110. Al-Mulla EAJ, Yunus WMZW, Ibrahim NAB, Rahman MZA (2010) Properties of epoxidized palm oil plasticized polytlactic acid. J Mater Sci 45:1942–1946. https://doi.org/10.1007/s10853-009-4185-1

    Article  CAS  Google Scholar 

  111. Du H, Zhang J (2010) Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter 6:3370–3376. https://doi.org/10.1039/b922220k

    Article  CAS  Google Scholar 

  112. Zhao W, Gao C, Sang H et al (2016) Calcium sulfate hemihydrate whisker reinforced polyvinyl alcohol with improved shape memory effect. RSC Adv 6:52982–52986. https://doi.org/10.1039/c6ra03717h

    Article  CAS  Google Scholar 

  113. Du FP, Ye EZ, Tang CY et al (2013) Microstructure and shape memory effect of acidic carbon nanotubes reinforced polyvinyl alcohol nanocomposites. J Appl Polym Sci 129:1299–1305. https://doi.org/10.1002/app.38807

    Article  CAS  Google Scholar 

  114. Bose S, Khare RA, Moldenaers P (2010) Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: a critical review. Polymer (Guildf) 51:975–993

    Article  CAS  Google Scholar 

  115. Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706. https://doi.org/10.1002/adma.200501851

    Article  CAS  Google Scholar 

  116. Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944. https://doi.org/10.1016/j.progpolymsci.2010.11.004

    Article  CAS  Google Scholar 

  117. Na X, Qingjie J, Chongguang Z et al (2010) Study on dispersion and electrical property of multi-walled carbon nanotubes/low-density polyethylene nanocomposites. Mater Des 31:1676–1683. https://doi.org/10.1016/j.matdes.2009.02.032

    Article  CAS  Google Scholar 

  118. Xu JZ, Zhong GJ, Hsiao BS et al (2014) Low-dimensional carbonaceous nanofiller induced polymer crystallization. Prog Polym Sci 39:555–593. https://doi.org/10.1016/j.progpolymsci.2013.06.005

    Article  CAS  Google Scholar 

  119. Xu D, Wang Z (2008) Role of multi-wall carbon nanotube network in composites to crystallization of isotactic polypropylene matrix. Polymer (Guildf) 49:330–338. https://doi.org/10.1016/j.polymer.2007.11.041

    Article  CAS  Google Scholar 

  120. Takeda T, Shindo Y, Kuronuma Y, Narita F (2011) Modeling and characterization of the electrical conductivity of carbon nanotube-based polymer composites. Polymer (Guildf) 52:3852–3856. https://doi.org/10.1016/j.polymer.2011.06.046

    Article  CAS  Google Scholar 

  121. Kim M, Mun SC, Lee CS et al (2011) Electrical and rheological properties of polyamide 6,6/γ-ray irradiated multi-walled carbon nanotube composites. Carbon N Y 49:4024–4030. https://doi.org/10.1016/j.carbon.2011.05.044

    Article  CAS  Google Scholar 

  122. Chen J, Zhang ZX, Huang WB et al (2015) Carbon nanotube network structure induced strain sensitivity and shape memory behavior changes of thermoplastic polyurethane. Mater Des 69:105–113. https://doi.org/10.1016/j.matdes.2014.12.054

    Article  CAS  Google Scholar 

  123. Ji M, Deng H, Yan D et al (2014) Selective localization of multi-walled carbon nanotubes in thermoplastic elastomer blends: An effective method for tunable resistivity-strain sensing behavior. Compos Sci Technol 92:16–26. https://doi.org/10.1016/j.compscitech.2013.11.018

    Article  CAS  Google Scholar 

  124. Teymouri M, Kokabi M, Alamdarnejad G (2019) Conductive shape-memory polyurethane/multiwall carbon nanotube nanocomposite aerogels. J Appl Polym Sci 48602:1–11. https://doi.org/10.1002/app.48602

    Article  CAS  Google Scholar 

  125. Wang X, Jiang M, Zhou Z et al (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  CAS  Google Scholar 

  126. Wang X, Sparkman J, Gou J (2017) Electrical actuation and shape memory behavior of polyurethane composites incorporated with printed carbon nanotube layers. Compos Sci Technol 141:8–15. https://doi.org/10.1016/j.compscitech.2017.01.002

    Article  CAS  Google Scholar 

  127. Mahapatra SS, Yadav SK, Yoo HJ et al (2014) Tailored and strong electro-responsive shape memory actuation in carbon nanotube-reinforced hyperbranched polyurethane composites. Sensors Actuators B Chem 193:384–390. https://doi.org/10.1016/j.snb.2013.12.006

    Article  CAS  Google Scholar 

  128. Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275. https://doi.org/10.1016/j.progpolymsci.2003.12.002

    Article  CAS  Google Scholar 

  129. Wang F, Wang JW, Li SQ, Xiao J (2009) Dielectric properties of epoxy composites with modified multiwalled carbon nanotubes. Polym Bull 63:101–110. https://doi.org/10.1007/s00289-009-0064-9

    Article  CAS  Google Scholar 

  130. Mahapatra SS, Yadav SK, Yoo HJ, Cho JW (2011) Highly stretchable, transparent and scalable elastomers with tunable dielectric permittivity. J Mater Chem 21:7686–7691. https://doi.org/10.1039/c1jm10225g

    Article  CAS  Google Scholar 

  131. Aboutalebi SH, Aboutalebi SH, Salari M et al (2017) Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy 4:1855–1865

    Google Scholar 

  132. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206. https://doi.org/10.1063/1.107080

    Article  CAS  Google Scholar 

  133. Hashim DP, Narayanan NT, Romo-Herrera JM et al (2012) Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Sci Rep 2:1–8. https://doi.org/10.1038/srep00363

    Article  CAS  Google Scholar 

  134. Ha YM, Kim YO, Kim YN et al (2019) Rapidly self-heating shape memory polyurethane nanocomposite with boron-doped single-walled carbon nanotubes using near-infrared laser. Compos Part B Eng. https://doi.org/10.1016/j.compositesb.2019.107065

    Article  Google Scholar 

  135. Kim HM, Park J, Huang ZM et al (2019) Carbon nanotubes embedded shape memory polyurethane foams. Macromol Res. https://doi.org/10.1007/s13233-019-7129-x

    Article  Google Scholar 

  136. Abishera R, Velmurugan R, Nagendra Gopal KV (2018) Free, partial, and fully constrained recovery analysis of cold-programmed shape memory epoxy/carbon nanotube nanocomposites: experiments and predictions. J Intell Mater Syst Struct 29:2164–2176. https://doi.org/10.1177/1045389X18758187

    Article  CAS  Google Scholar 

  137. Xie T (2011) Recent advances in polymer shape memory. Polymer (Guildf) 52:4985–5000

    Article  CAS  Google Scholar 

  138. Lakhera N, Yakacki CM, Thao D, Nguyen CPF (2012) Partially constrained recovery of (meth)acrylate shape-memory polymer networks nishant. J Appl Polym Sci 126:72–82. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  139. Rodriguez ED, Luo X, Mather PT (2011) Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl Mater Interfaces 3:152–161. https://doi.org/10.1021/am101012c

    Article  CAS  PubMed  Google Scholar 

  140. Nji J, Li G (2010) A biomimic shape memory polymer based self-healing particulate composite. Polymer (Guildf) 51:6021–6029. https://doi.org/10.1016/j.polymer.2010.10.021

    Article  CAS  Google Scholar 

  141. Wornyo E, Gall K, Yang F, King W (2007) Nanoindentation of shape memory polymer networks. Polymer (Guildf) 48:3213–3225. https://doi.org/10.1016/j.polymer.2007.03.029

    Article  CAS  Google Scholar 

  142. Xiao X, Xie T, Cheng YT (2010) Self-healable graphene polymer composites. J Mater Chem 20:3508–3514. https://doi.org/10.1039/c0jm00307g

    Article  CAS  Google Scholar 

  143. Lu J, Arsalan A, Dong Y et al (2017) Shape memory effect and recovery stress property of carbon nanotube/waterborne epoxy nanocomposites investigated via TMA. Polym Test 59:462–469. https://doi.org/10.1016/j.polymertesting.2017.03.001

    Article  CAS  Google Scholar 

  144. Dong Y, Xia H, Zhu Y et al (2015) Effect of epoxy-graft-polyoxyethylene octyl phenyl ether on preparation, mechanical properties and triple-shape memory effect of carbon nanotube/water-borne epoxy nanocomposites. Compos Sci Technol 120:17–25. https://doi.org/10.1016/j.compscitech.2015.09.011

    Article  CAS  Google Scholar 

  145. Lama GC, Cerruti P, Lavorgna M et al (2016) Controlled actuation of a carbon nanotube/epoxy shape-memory liquid crystalline elastomer. J Phys Chem C 120:24417–24426. https://doi.org/10.1021/acs.jpcc.6b06550

    Article  CAS  Google Scholar 

  146. Liu Y, Zhao J, Zhao L et al (2016) High performance shape memory epoxy/carbon nanotube nanocomposites. ACS Appl Mater Interfaces 8:311–320. https://doi.org/10.1021/acsami.5b08766

    Article  CAS  PubMed  Google Scholar 

  147. Mat Yazik MH, Sultan MT, Ain AU, Norkhairunnisa M (2019) Effect of MWCNT content on thermal and shape memory properties of epoxy nanocomposites as material for morphing wing skin. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-08367-6

    Article  Google Scholar 

  148. Awale RJ, Ali FB, Azmi AS et al (2018) Enhanced flexibility of biodegradable polylactic acid/starch blends using epoxidized palm oil as plasticizer. Polymers (Basel). https://doi.org/10.3390/polym10090977

    Article  PubMed Central  Google Scholar 

  149. Raghunath S, Kumar S, Samal SK et al (2018) PLA/ESO/MWCNT nanocomposite: a study on mechanical, thermal and electroactive shape memory properties. J Polym Res. https://doi.org/10.1007/s10965-018-1523-5

    Article  Google Scholar 

  150. Alam J, Alam M, Dass LA et al (2014) Development of plasticized PLA/NH 2-CNTs nanocomposite: potential of NH<inf>2</inf>-CNTs to improve electroactive shape memory properties. Polym Compos 35:2129–2136. https://doi.org/10.1002/pc.22875

    Article  CAS  Google Scholar 

  151. Du FP, Ye EZ, Yang W et al (2015) Electroactive shape memory polymer based on optimized multi-walled carbon nanotubes/polyvinyl alcohol nanocomposites. Compos Part B Eng 68:170–175. https://doi.org/10.1016/j.compositesb.2014.08.043

    Article  CAS  Google Scholar 

  152. Heidarshenas M, Kokabi M, Hosseini H (2019) Shape memory conductive electrospun PVA/MWCNT nanocomposite aerogels. Polym J 51:579–590. https://doi.org/10.1038/s41428-018-0167-y

    Article  CAS  Google Scholar 

  153. Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286. https://doi.org/10.1038/nature04969

    Article  CAS  PubMed  Google Scholar 

  154. Ramanathan T, Abdala AA, Stankovich S et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331. https://doi.org/10.1038/nnano.2008.96

    Article  CAS  PubMed  Google Scholar 

  155. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  156. Choi EY, Han TH, Hong J et al (2010) Noncovalent functionalization of graphene with end-functional polymers. J Mater Chem 20:1907–1912. https://doi.org/10.1039/b919074k

    Article  CAS  Google Scholar 

  157. Yang H, Li F, Shan C et al (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638. https://doi.org/10.1039/b901421g

    Article  CAS  Google Scholar 

  158. Dreyer DR, Todd AD, Bielawski CW (2014) Harnessing the chemistry of graphene oxide. Chem Soc Rev 43:5288–5301. https://doi.org/10.1039/c4cs00060a

    Article  CAS  PubMed  Google Scholar 

  159. Lotfi Mayan Sofla R, Rezaei M, Babaie A (2019) Investigation of the effect of graphene oxide functionalization on the physical, mechanical and shape memory properties of polyurethane/reduced graphene oxide nanocomposites. Diam Relat Mater 95:195–205. https://doi.org/10.1016/j.diamond.2019.04.012

    Article  CAS  Google Scholar 

  160. Zhang X, Zheng J, Fang H et al (2017) Surface modified graphene oxide cross-linking with hydroxyl-terminated polybutadiene polyurethane: Effects on structure and properties. Compos Part A Appl Sci Manuf 103:208–218. https://doi.org/10.1016/j.compositesa.2017.10.011

    Article  CAS  Google Scholar 

  161. Lin C, Sheng D, Liu X et al (2017) A self-healable nanocomposite based on dual-crosslinked graphene oxide/polyurethane. Polymer (Guildf) 127:241–250. https://doi.org/10.1016/j.polymer.2017.09.001

    Article  CAS  Google Scholar 

  162. Du W, Jin Y, Lai S et al (2018) Near-infrared light triggered shape memory and self-healable polyurethane/functionalized graphene oxide composites containing diselenide bonds. Polymer (Guildf) 158:120–129. https://doi.org/10.1016/j.polymer.2018.10.059

    Article  CAS  Google Scholar 

  163. Zhang Y, Hu J, Zhu S et al (2019) A “trampoline” nanocomposite: Tuning the interlayer spacing in graphene oxide/polyurethane to achieve coalesced mechanical and memory properties. Compos Sci Technol 180:14–22. https://doi.org/10.1016/j.compscitech.2019.04.033

    Article  CAS  Google Scholar 

  164. Yang SJ, Kim T, Jung H, Park CR (2013) The effect of heating rate on porosity production during the low temperature reduction of graphite oxide. Carbon 53:73–80. https://doi.org/10.1016/j.carbon.2012.10.032

    Article  CAS  Google Scholar 

  165. Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun 30:316–327. https://doi.org/10.1002/marc.200800754

    Article  CAS  PubMed  Google Scholar 

  166. Chen L, Li W, Liu Y, Leng J (2016) Nanocomposites of epoxy-based shape memory polymer and thermally reduced graphite oxide: Mechanical, thermal and shape memory characterizations. Compos Part B Eng 91:75–82. https://doi.org/10.1016/j.compositesb.2016.01.019

    Article  CAS  Google Scholar 

  167. Qi X, Yao X, Deng S et al (2014) Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites. J Mater Chem A 2:2240–2249. https://doi.org/10.1039/c3ta14340f

    Article  CAS  Google Scholar 

  168. Abbasi A, Mir Mohamad Sadeghi G, Ghasemi I, Shahrousvand M (2018) Shape memory performance of green in situ polymerized nanocomposites based on polyurethane/graphene nanoplatelets: Synthesis, properties, and cell behavior. Polym Compos 39:4020–4033. https://doi.org/10.1002/pc.24456

    Article  CAS  Google Scholar 

  169. Sun Y, He C (2012) Synthesis and stereocomplex crystallization of poly(lactide)-graphene oxide nanocomposites. ACS Macro Lett 1:709–713. https://doi.org/10.1021/mz300131u

    Article  CAS  Google Scholar 

  170. Keramati M, Ghasemi I, Karrabi M et al (2016) Dispersion of graphene nanoplatelets in polylactic acid with the aid of a zwitterionic surfactant: evaluation of the shape memory behavior. Polym - Plast Technol Eng 55:1039–1047. https://doi.org/10.1080/03602559.2015.1132458

    Article  CAS  Google Scholar 

  171. Jiu H, Jiao H, Zhang L et al (2016) Graphene-crosslinked two-way reversible shape memory polyurethane nanocomposites with enhanced mechanical and electrical properties. J Mater Sci Mater Electron 27:10720–10728. https://doi.org/10.1007/s10854-016-5173-2

    Article  CAS  Google Scholar 

  172. Yongkun Wang, Tianran Ma, Wenchao Tian, Junjie Ye XW and XJ (2017) Electroactive shape memory properties of graphene/epoxy-cyanate ester nanocomposites. Pigment Resin Technol

  173. Sarabiyan Nejad S, Rezaei M, Bagheri M (2019) Polyurethane/nitrogen-doped graphene quantum dot (N-GQD) nanocomposites: synthesis, characterization, thermal, mechanical and shape memory properties. Polym Technol Mater. https://doi.org/10.1080/25740881.2019.1647243

    Article  Google Scholar 

  174. Raza MA, Westwood A, Stirling C (2012) Effect of processing technique on the transport and mechanical properties of vapour grown carbon nanofibre/rubbery epoxy composites for electronic packaging applications. Carbon 50:84–97. https://doi.org/10.1016/j.carbon.2011.08.010

    Article  CAS  Google Scholar 

  175. Dong Y, Ni QQ, Li L, Fu Y (2014) Novel vapor-grown carbon nanofiber/epoxy shape memory nanocomposites prepared via latex technology. Mater Lett 132:206–209. https://doi.org/10.1016/j.matlet.2014.06.084

    Article  CAS  Google Scholar 

  176. Ding J, Yaofeng Zhu YF (2014) Preparation and properties of silanized vapor-grown carbon nanofibers/epoxy shape memory nanocomposites. Polym Compos. https://doi.org/10.1002/pc.22675

    Article  Google Scholar 

  177. Xu X, Ray R, Gu Y et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737. https://doi.org/10.1021/ja040082h

    Article  CAS  PubMed  Google Scholar 

  178. Lu S, Sui L, Liu J et al (2017) Near-infrared photoluminescent polymer–carbon nanodots with two-photon fluorescence. Advanced materials. https://doi.org/10.1002/adma.201603443

    Article  PubMed  Google Scholar 

  179. Online VA, Yang Z, Xu M et al (2014) Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nano scale. https://doi.org/10.1039/c3nr05380f

    Article  Google Scholar 

  180. Cao L, Sahu S, Anilkumar P et al (2011) Carbon Nanoparticles as Visible-Light Photocatalysts for Efficient CO 2 Conversion and Beyond. J Am Chem Soc. https://doi.org/10.1021/ja200804h

    Article  PubMed  PubMed Central  Google Scholar 

  181. Li W, Zheng Y, Zhang H et al (2016) Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants. ASC Appl Mater Interfaces. https://doi.org/10.1021/acsami.6b07268

    Article  Google Scholar 

  182. Qu S, Zhou D, Li D et al (2016) Toward efficient orange emissive carbon nanodots through conjugated sp 2 -domain controlling and surface charges engineering. Adv Meter. https://doi.org/10.1002/adma.201504891

    Article  Google Scholar 

  183. Wu S, Li W, Zhou W et al (2018) Large-scale one-step synthesis of carbon dots from yeast extract powder and construction of carbon dots/pva fluorescent shape memory material. Adv Opt Mater 6:1–8. https://doi.org/10.1002/adom.201701150

    Article  CAS  Google Scholar 

  184. Arun DI, Santhosh Kumar KS, Satheesh Kumar B et al (2019) High glass-transition polyurethane-carbon black electro-active shape memory nanocomposite for aerospace systems. Mater Sci Technol (United Kingdom) 35:596–605. https://doi.org/10.1080/02670836.2019.1575054

    Article  CAS  Google Scholar 

  185. Ma L, Zhao J, Wang X et al (2015) Effects of carbon black nanoparticles on two-way reversible shape memory in crosslinked polyethylene. Polymer (Guildf) 56:490–497. https://doi.org/10.1016/j.polymer.2014.11.036

    Article  CAS  Google Scholar 

  186. Kausar A, Siddiq M (2016) Polyurethane/poly(ethylene-co-ethyl acrylate) and functional carbon black-based hybrids: physical properties and shape memory behavior. J Appl Polym Sci 133:1–10. https://doi.org/10.1002/app.43481

    Article  CAS  Google Scholar 

  187. Novák I, Krupa I, Chodák I (2002) Relation between electrical and mechanical properties in polyurethane/carbon black adhesives. J Mater Sci Lett 21:1039–1041. https://doi.org/10.1023/A:1016073010528

    Article  Google Scholar 

  188. Bin XuX, Li ZM, Yu RZ et al (2004) Formation of in situ CB/PET microfibers in CB/PET/PE composites by slit die extrusion and hot stretching. Macromol Mater Eng 289:568–575. https://doi.org/10.1002/mame.200400016

    Article  CAS  Google Scholar 

  189. Wang K, Zhu GM, Yan XG et al (2016) Electroactive shape memory cyanate/polybutadiene epoxy composites filled with carbon black. Chinese J Polym Sci 34:466–474. https://doi.org/10.1007/s10118-016-1766-8

    Article  CAS  Google Scholar 

  190. Zou Q, Wang MZ, Li YG (2010) Analysis of the nanodiamond particle fabricated by detonation. J Exp Nanosci 5:319–328. https://doi.org/10.1080/17458080903531021

    Article  CAS  Google Scholar 

  191. Yoo HJ, Lee BH, Mahapatra SS et al (2017) Polyurethane nanocomposites with click-coupled nanodiamonds exhibiting enhanced mechanical and shape memory effects. J Appl Polym Sci 134:1–9. https://doi.org/10.1002/app.45465

    Article  CAS  Google Scholar 

  192. Kausar A (2016) Nanodiamond tethered epoxy/polyurethane interpenetrating network nanocomposite: physical properties and thermoresponsive shape-memory behavior. Int J Polym Anal Charact 21:348–358. https://doi.org/10.1080/1023666X.2016.1156911

    Article  CAS  Google Scholar 

  193. Gogoi S, Karak N (2016) Biobased waterborne hyperbranched polyurethane/NiFe2O4@rGO nanocomposite with multi-stimuli responsive shape memory attributes. RSC Adv 6:94815–94825. https://doi.org/10.1039/c6ra16848e

    Article  CAS  Google Scholar 

  194. Kausar A, Ur Rahman A (2016) Effect of graphene nanoplatelet addition on properties of thermo-responsive shape memory polyurethane-based nanocomposite. Fullerenes Nanotub Carbon Nanostructures 24:235–242. https://doi.org/10.1080/1536383X.2016.1144592

    Article  CAS  Google Scholar 

  195. Xu X, Fan P, Ren J et al (2018) Self-healing thermoplastic polyurethane (TPU)/polycaprolactone (PCL) /multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites. Compos Sci Technol 168:255–262. https://doi.org/10.1016/j.compscitech.2018.10.003

    Article  CAS  Google Scholar 

  196. Yi DH, Yoo HJ, Mahapatra SS et al (2014) The synergistic effect of the combined thin multi-walled carbon nanotubes and reduced graphene oxides on photothermally actuated shape memory polyurethane composites. J Colloid Interface Sci 432:128–134. https://doi.org/10.1016/j.jcis.2014.06.060

    Article  CAS  PubMed  Google Scholar 

  197. Menon AV, Madras G, Bose S (2018) Shape memory polyurethane nanocomposites with porous architectures for enhanced microwave shielding. Chem Eng J 352:590–600. https://doi.org/10.1016/j.cej.2018.07.048

    Article  CAS  Google Scholar 

  198. Lamberti P, Kuzhir P, Tucci V (2016) A robust approach to the design of an electromagnetic shield based on pyrolitic carbon. AIP Adv. https://doi.org/10.1063/1.4958298

    Article  Google Scholar 

  199. Bayan R, Karak N (2017) Renewable resource derived aliphatic hyperbranched polyurethane/aluminium hydroxide-reduced graphene oxide nanocomposites as robust, thermostable material with multi-stimuli responsive shape memory features. New J Chem 41:8781–8790. https://doi.org/10.1039/c7nj01841j

    Article  CAS  Google Scholar 

  200. Dorigato A, Pegoretti A (2019) Shape memory epoxy nanocomposites with carbonaceous fillers and in-situ generated silver nanoparticles. Polym Eng Sci 59:694–703. https://doi.org/10.1002/pen.24985

    Article  CAS  Google Scholar 

  201. Zhou J, Li H, Tian R et al (2017) Fabricating fast triggered electro-active shape memory graphite/silver nanowires/epoxy resin composite from polymer template. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-05968-9

    Article  CAS  Google Scholar 

  202. Du H, Song Z, Wang J et al (2015) Microwave-induced shape-memory effect of silicon carbide/poly(vinyl alcohol) composite. Sensors Actuators, A Phys 228:1–8. https://doi.org/10.1016/j.sna.2015.01.012

    Article  CAS  Google Scholar 

  203. Chen L, Liu Y, Leng J (2018) Microwave responsive epoxy nanocomposites reinforced by carbon nanomaterials of different dimensions. J Appl Polym Sci 135:1–10. https://doi.org/10.1002/app.45676

    Article  CAS  Google Scholar 

  204. Kim KH, Cho KM, Kim DW et al (2016) The role of layer-controlled graphene for tunable microwave heating and its applications to the synthesis of inorganic thin films. ACS Appl Mater Interfaces 8:5556–5562. https://doi.org/10.1021/acsami.5b11458

    Article  CAS  PubMed  Google Scholar 

  205. Wang E, Dong Y, Islam MZ et al (2019) Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites. Compos Sci Technol 169:209–216. https://doi.org/10.1016/j.compscitech.2018.11.022

    Article  CAS  Google Scholar 

  206. Ren D, Chen Y, Yang S et al (2019) Fast and efficient electric-triggered self-healing shape memory of CNTs@rGO enhanced PCLPLA copolymer. Macromol Chem Phys 1900281:1900281. https://doi.org/10.1002/macp.201900281

    Article  CAS  Google Scholar 

  207. Khademeh Molavi F, Ghasemi I, Messori M, Esfandeh M (2017) Nanocomposites based on poly(L-lactide)/poly(ε-caprolactone) blends with triple-shape memory behavior: effect of the incorporation of graphene nanoplatelets (GNps). Compos Sci Technol 151:219–227. https://doi.org/10.1016/j.compscitech.2017.08.021

    Article  CAS  Google Scholar 

  208. Eshkaftaki FJ, Ghasemi I (2018) Multiple-shape memory behavior of nanocomposite based on polymethylmethacrylate/poly (lactic acid)/graphene nanoplatelets (PMMA/PLA/GNP). Polym Bull 75:4073–4084. https://doi.org/10.1007/s00289-017-2252-3

    Article  CAS  Google Scholar 

  209. Buckley PR, McKinley GH, Wilson TS et al (2006) Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE Trans Biomed Eng 53:2075–2083. https://doi.org/10.1109/TBME.2006.877113

    Article  PubMed  Google Scholar 

  210. Lendlein A, Behl M, Hiebl B, Wischke C (2010) Shape-memory polymers as a technology platform for biomedical applications. Expert Rev Med Devices 7:357–379. https://doi.org/10.1586/erd.10.8

    Article  CAS  PubMed  Google Scholar 

  211. Quinto CA, Mohindra P, Tong S, Bao G (2015) Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 7:12728–12736. https://doi.org/10.1039/c5nr02718g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Sasikala ARK, Unnithan AR, Yun YH et al (2016) An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. Acta Biomater 31:122–133. https://doi.org/10.1016/j.actbio.2015.12.015

    Article  CAS  PubMed  Google Scholar 

  213. Razzaq MY, Behl M, Lendlein A (2012) Magnetic memory effect of nanocomposites. Adv Funct Mater 22:184–191. https://doi.org/10.1002/adfm.201101590

    Article  CAS  Google Scholar 

  214. Yoonessi M, Peck JA, Bail JL et al (2011) Transparent large-strain thermoplastic polyurethane magnetoactive nanocomposites. ACS Appl Mater Interfaces 3:2686–2693. https://doi.org/10.1021/am200468t

    Article  CAS  PubMed  Google Scholar 

  215. Soto GD, Meiorin C, Actis DG et al (2018) Magnetic nanocomposites based on shape memory polyurethanes. Eur Polym J 109:8–15. https://doi.org/10.1016/j.eurpolymj.2018.08.046

    Article  CAS  Google Scholar 

  216. Gu SY, Chang K, Jin SP (2018) A dual-induced self-expandable stent based on biodegradable shape memory polyurethane nanocomposites (PCLAU/Fe3O4) triggered around body temperature. J Appl Polym Sci 135:1–10. https://doi.org/10.1002/app.45686

    Article  CAS  Google Scholar 

  217. Zou H, Weder C, Simon YC (2015) Shape-memory polyurethane nanocomposites with single layer or bilayer oleic acid-coated Fe3O4Nanoparticles. Macromol Mater Eng 300:885–892. https://doi.org/10.1002/mame.201500079

    Article  CAS  Google Scholar 

  218. Gao Y, Zhu G, Xu S et al (2018) Biodegradable magnetic-sensitive shape memory poly(ɛ-caprolactone)/Fe3O4 nanocomposites. J Appl Polym Sci 135:2–10. https://doi.org/10.1002/app.45652

    Article  CAS  Google Scholar 

  219. Huang J, Cao L, Yuan D, Chen Y (2019) Design of multi-stimuli-responsive shape memory biobased PLA/ENR/Fe3O4 TPVs with balanced stiffness-toughness based on selective distribution of Fe3O4. ACS Sustain Chem Eng 7:2304–2315. https://doi.org/10.1021/acssuschemeng.8b05025

    Article  CAS  Google Scholar 

  220. Zhao TH, Yuan WQ, Li YD et al (2018) Relating chemical structure to toughness via morphology control in fully sustainable sebacic acid cured epoxidized soybean oil toughened polylactide blends. Macromolecules 51:2027–2037. https://doi.org/10.1021/acs.macromol.8b00103

    Article  CAS  Google Scholar 

  221. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chemie - Int Ed 44:3358–3393. https://doi.org/10.1002/anie.200460587

    Article  CAS  Google Scholar 

  222. Chen W, Yu H, Lee SY et al (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872. https://doi.org/10.1039/c7cs00790f

    Article  CAS  PubMed  Google Scholar 

  223. Huq T, Salmieri S, Khan A et al (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90:1757–1763. https://doi.org/10.1016/j.carbpol.2012.07.065

    Article  CAS  PubMed  Google Scholar 

  224. Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64:866–884. https://doi.org/10.1016/j.addr.2012.01.020

    Article  CAS  PubMed  Google Scholar 

  225. Chen H, Li Y, Liu Y et al (2014) Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polym Chem 5:5168–5174. https://doi.org/10.1039/c4py00474d

    Article  CAS  Google Scholar 

  226. Li Y, Chen H, Liu D et al (2015) PH-responsive shape memory poly(ethylene glycol)-poly(ε-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl Mater Interfaces 7:12988–12999. https://doi.org/10.1021/acsami.5b02940

    Article  CAS  PubMed  Google Scholar 

  227. Khadivi P, Salami-Kalajahi M, Roghani-Mamaqani H, Lotfi Mayan Sofla R (2019) Fabrication of microphase-separated polyurethane/cellulose nanocrystal nanocomposites with irregular mechanical and shape memory properties. Appl Phys A Mater Sci Process 125:1–10. https://doi.org/10.1007/s00339-019-3082-y

    Article  CAS  Google Scholar 

  228. Shirole A, Nicharat A, Perotto CU, Weder C (2018) Tailoring the properties of a shape-memory polyurethane via nanocomposite formation and nucleation. Macromolecules 51:1841–1849. https://doi.org/10.1021/acs.macromol.7b01728

    Article  CAS  Google Scholar 

  229. Garces IT, Aslanzadeh S, Boluk Y, Ayranci C (2018) Cellulose nanocrystals (CNC) reinforced shape memory polyurethane ribbons for future biomedical applications and design. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705718806334

    Article  Google Scholar 

  230. Li K, Wei P, Huang J et al (2019) Mechanically strong shape-memory and solvent-resistant double-network polyurethane/nanoporous cellulose gel nanocomposites. ACS Sustain Chem Eng 7:15974–15982. https://doi.org/10.1021/acssuschemeng.9b02341

    Article  CAS  Google Scholar 

  231. Wang Y, Cheng Z, Liu Z et al (2018) Cellulose nanofibers/polyurethane shape memory composites with fast water-responsivity. J Mater Chem B 6:1668–1677. https://doi.org/10.1039/c7tb03069j

    Article  CAS  PubMed  Google Scholar 

  232. Lamm ME, Wang Z, Zhou J et al (2018) Sustainable epoxy resins derived from plant oils with thermo- and chemo-responsive shape memory behavior. Polymer (Guildf) 144:121–127. https://doi.org/10.1016/j.polymer.2018.04.047

    Article  CAS  Google Scholar 

  233. Sessini V, Navarro-Baena I, Arrieta MP et al (2018) Effect of the addition of polyester-grafted-cellulose nanocrystals on the shape memory properties of biodegradable PLA/PCL nanocomposites. Polym Degrad Stab 152:126–138. https://doi.org/10.1016/j.polymdegradstab.2018.04.012

    Article  CAS  Google Scholar 

  234. Barmouz M, Behravesh AH (2017) Shape memory behaviors in cylindrical shell PLA/TPU-cellulose nanofiber bio-nanocomposites: Analytical and experimental assessment. Compos Part A Appl Sci Manuf 101:160–172. https://doi.org/10.1016/j.compositesa.2017.06.014

    Article  CAS  Google Scholar 

  235. Connor EE, Mwamuka J, Gole A et al (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327. https://doi.org/10.1002/smll.200400093

    Article  CAS  PubMed  Google Scholar 

  236. Carlotti S, Tunc D, Le Coz C et al (2014) Reversible cross-linking of aliphatic polyamides bearing thermo- and photoresponsive cinnamoyl moieties. Macromolecules 23:8247–8254

    Google Scholar 

  237. Xu H, Budhlall BM (2018) Gold nanorods or nanospheres? Role of particle shape on tuning the shape memory effect of semicrystalline poly(ϵ-caprolactone) networks. RSC Adv 8:29283–29294. https://doi.org/10.1039/c8ra06715e

    Article  CAS  Google Scholar 

  238. West PR, Ishii S, Naik GV et al (2010) Searching for better plasmonic materials. Laser Photonics Rev 4:795–808. https://doi.org/10.1002/lpor.200900055

    Article  CAS  Google Scholar 

  239. Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: Beyond gold and silver. Adv Mater 25:3264–3294. https://doi.org/10.1002/adma.201205076

    Article  CAS  PubMed  Google Scholar 

  240. Neumann O, Urban A, Day J, Lal S (2012) Solar vapor generation enabled by nanoparticles: supporting information. ACS Nano 7:42–49

    Article  Google Scholar 

  241. Han D, Meng Z, Wu D et al (2011) Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett 6:1–7. https://doi.org/10.1186/1556-276X-6-457

    Article  CAS  Google Scholar 

  242. Guler U, Naik GV, Boltasseva A et al (2012) Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications. Appl Phys B Lasers Opt 107:285–291. https://doi.org/10.1007/s00340-012-4955-3

    Article  CAS  Google Scholar 

  243. Ishii S, Uto K, Niiyama E et al (2016) Hybridizing poly(ε-caprolactone) and plasmonic titanium nitride nanoparticles for broadband photoresponsive shape memory films. ACS Appl Mater Interfaces 8:5634–5640. https://doi.org/10.1021/acsami.5b12658

    Article  CAS  PubMed  Google Scholar 

  244. Patel DK, Biswas A, Maiti P (2016) Nanoparticle-induced phenomena in polyurethanes. Elsevier, Amsterdam

    Book  Google Scholar 

  245. Biswas A, Aswal VK, Maiti P (2019) Tunable shape memory behavior of polymer with surface modification of nanoparticles. J Colloid Interface Sci 556:147–158. https://doi.org/10.1016/j.jcis.2019.08.053

    Article  CAS  PubMed  Google Scholar 

  246. Srivastava S, Biswas A, Senapati S et al (2017) Novel shape memory behaviour in IPDI based polyurethanes: Influence of nanoparticle. Polymer (Guildf) 110:95–104. https://doi.org/10.1016/j.polymer.2016.12.080

    Article  CAS  Google Scholar 

  247. Jung DH, Jeong HM, Kim BK (2010) Organic-inorganic chemical hybrids having shape memory effect. J Mater Chem 20:3458–3466. https://doi.org/10.1039/b922775j

    Article  CAS  Google Scholar 

  248. Yubing Dong Q-QN (2014) Effect of vapor-grown carbon nanofibers and in situ hydrolyzed silica on the mechanical and shape memory properties of water-borne epoxy composites. Polym Compos. https://doi.org/10.1002/pc.23082

    Article  Google Scholar 

  249. Ponyrko S, Donato RK, Matějka L (2016) Tailored high performance shape memory epoxy-silica nanocomposites. Structure design Polym Chem 7:560–572. https://doi.org/10.1039/c5py01450f

    Article  CAS  Google Scholar 

  250. Di MS, Ching WY (1995) Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Phys Rev B 51:13023–13032. https://doi.org/10.1103/PhysRevB.51.13023

    Article  Google Scholar 

  251. Askari M, Mehranpour H, Ghamsari MS, Farzalibeik H (2010) Study on the phase transformation kinetics of sol-gel drived TiO2 nanoparticles. J Nanomater. https://doi.org/10.1155/2010/626978

    Article  Google Scholar 

  252. Ingham B, Dickie S, Nanjo H, Toney MF (2009) In situ USAXS measurements of titania colloidal paint films during the drying process. J Colloid Interface Sci 336:612–615. https://doi.org/10.1016/j.jcis.2009.04.035

    Article  CAS  PubMed  Google Scholar 

  253. Shi S, Shen D, Xu T, Zhang Y (2018) Thermal, optical, interfacial and mechanical properties of titanium dioxide/shape memory polyurethane nanocomposites. Compos Sci Technol 164:17–23. https://doi.org/10.1016/j.compscitech.2018.05.022

    Article  CAS  Google Scholar 

  254. Yu G, Chen H, Wang W et al (2018) Influence of sepiolite on crystallinity of soft segments and shape memory properties of polyurethane nanocomposites. Polym Compos 39:1674–1681. https://doi.org/10.1002/pc.24115

    Article  CAS  Google Scholar 

  255. Hou GX, Gao JG, Tian C (2013) Hybrid free radical-cationic thermal polymerization of methylacryloylpropyl-POSS/epoxy resins nanocomposites. J Polym Res. https://doi.org/10.1007/s10965-013-0221-6

    Article  Google Scholar 

  256. Demirel MH, Köytepe S, Gültek A, Seçkin T (2014) Synthesis and stimuli-responsive properties of the phenanthroline based metallo-supramolecular polymers. J Polym Res. https://doi.org/10.1007/s10965-013-0345-8

    Article  Google Scholar 

  257. Gu SY, Jin SP, Liu LL (2015) Polyurethane/polyhedral oligomeric silsesquioxane shape memory nanocomposites with low trigger temperature and quick response. J Polym Res. https://doi.org/10.1007/s10965-015-0779-2

    Article  Google Scholar 

  258. Kashif M, Yun B-M, Lee K-S, Chang Y-W (2016) Biodegradable shape-memory poly(ε-caprolactone)/polyhedral oligomeric silsequioxane nanocomposites: sustained drug release and hydrolytic degradation. Mater Lett 166:125–128. https://doi.org/10.1016/j.matlet.2015.12.051

    Article  CAS  Google Scholar 

  259. Kausar A (2017) Exploration on high performance polyamide 1010/polyurethane blends filled with functional graphene nanoplatelet: physical properties and technical application. J Chinese Adv Mater Soc 5:133–147. https://doi.org/10.1080/22243682.2017.1305915

    Article  CAS  Google Scholar 

  260. Vogel R, Willmott G, Kozak D et al (2011) Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor. Anal Chem 83:3499–3506. https://doi.org/10.1021/ac200195n

    Article  CAS  PubMed  Google Scholar 

  261. Bin DJ, Kuan HC, Du XS et al (2009) Development of a novel toughener for epoxy resins. Polym Int 58:838–845. https://doi.org/10.1002/pi.2604

    Article  CAS  Google Scholar 

  262. Kausar A (2017) Shape memory interpenetrating network hybrids of epoxy/poly(urea-amide) and organic nanoparticle. J Chinese Adv Mater Soc 5:158–173. https://doi.org/10.1080/22243682.2017.1329028

    Article  CAS  Google Scholar 

  263. Kausar A (2018) An investigation on epoxy/poly(urethane-amide)-based interpenetrating polymer network reinforced with an organic nanoparticle. Mater Res Innov 22:58–68. https://doi.org/10.1080/14328917.2016.1265232

    Article  CAS  Google Scholar 

  264. Wei HQ, Chen Y, Zhang T et al (2018) Thermal, mechanical, and shape-memory properties of nanorubber-toughened, epoxy-based shape-memory nanocomposites. J Appl Polym Sci 135:1–8. https://doi.org/10.1002/app.45780

    Article  CAS  Google Scholar 

  265. Du K, Gan Z (2014) Shape memory behaviour of HA-g-PDLLA nanocomposites prepared via in situ polymerization. J Mater Chem B 2:3340–3348. https://doi.org/10.1039/c3tb21861a

    Article  CAS  PubMed  Google Scholar 

  266. Hardy JG, Palma M, Wind SJ, Biggs MJ (2016) Responsive biomaterials: advances in materials based on shape-memory polymers. Adv Mater. https://doi.org/10.1002/adma.201505417

    Article  PubMed  Google Scholar 

  267. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33. https://doi.org/10.1016/j.progpolymsci.2015.04.002

    Article  CAS  Google Scholar 

  268. Tian G, Zhu G, Xu S, Ren T (2019) A novel shape memory poly(ɛ-caprolactone)/hydroxyapatite nanoparticle networks for potential biomedical applications. J Solid State Chem 272:78–86. https://doi.org/10.1016/j.jssc.2019.01.029

    Article  CAS  Google Scholar 

  269. Kutikov AB, Reyer KA, Song J (2014) Shape-memory performance of thermoplastic amphiphilic triblock copolymer poly(D, L-lactic acid-co-ethylene glycol-co-D, L-lactic acid) (PELA)/hydroxyapatite composites. Macromol Chem Phys 215:2482–2490. https://doi.org/10.1002/macp.201400340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Peponi L, Sessini V, Arrieta MP et al (2018) Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polym Degrad Stab 151:36–51. https://doi.org/10.1016/j.polymdegradstab.2018.02.019

    Article  CAS  Google Scholar 

  271. Song X, Zhang L, Zhao J et al (2011) Preparation of calcium sulfate whiskers using waste calcium chloride by reactive crystallization. Cryst Res Technol 46:166–172. https://doi.org/10.1002/crat.201000420

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Mhaske.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhanushali, H., Amrutkar, S., Mestry, S. et al. Shape memory polymer nanocomposite: a review on structure–property relationship. Polym. Bull. 79, 3437–3493 (2022). https://doi.org/10.1007/s00289-021-03686-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03686-x

Keywords

Navigation