Skip to main content
Log in

Nanochitosan augmented with essential oils and extracts as an edible antimicrobial coating for the shelf life extension of fresh produce: a review

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

With increasing population and growing demands for ‘ready-to-consume’ high-quality fresh produce with longer shelf life, development of smart and intelligent food packaging systems has garnered extensive attention. Chitosan is a linear polysaccharide obtained from chitin, the second most abundant natural biopolymer on earth. Chitosan nanoparticles possess excellent physico-chemical, antimicrobial properties and are versatile due to their surface functionality. Though well-established research on chitosan nanocoatings in aquaculture, meat and meat products are in process, the use of nanochitosan edible formulations—films and coatings with the incorporation of essential oils and extracts for the shelf life extension of fruits remain largely unexplored. This review aims to highlight the significance of nanochitosan and its edible films and coating formulations with a particular focus on edible coatings of nanochitosan supplemented with essential oils and plant extracts to encourage more research work to further explore and develop better coatings for the shelf life extension of fresh produce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polymer J 49(4):780–792. https://doi.org/10.1016/j.eurpolymj.2012.12.009

    Article  CAS  Google Scholar 

  2. Brugnerotto J, Desbrieres J, Heux L, Mazeau K, Rinaudo M (2001) Overview on structural characterization of chitosan molecules in relation with their behavior in solution. In: Macromolecular symposi 168(1), pp 1–20. https://doi.org/10.1002/1521-3900(200103)168:1<1::AID-MASY1>3.0.CO;2-W

  3. Ji J, Torrealba D, Ruyra À, Roher N (2015) Nanodelivery systems as new tools for immunostimulant or vaccine administration: targeting the fish immune system. Biology 4(4):664–696. https://doi.org/10.3390/biology4040664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahmed S, Ikram S (2016) Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci 10(1):27–37. https://doi.org/10.1016/j.als.2016.04.001

    Article  Google Scholar 

  5. Kumirska J, Weinhold MX, Thöming J, Stepnowski P (2011) Biomedical activity of chitin/chitosan based materials—influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers 3(4):1875–1901. https://doi.org/10.3390/polym3041875

    Article  CAS  Google Scholar 

  6. Apetroaei MR, Pădureţu C, Rău I, Schroder V (2018) New-chitosan characterization and its bioassay in different salinity solutions using Artemia salina as bio tester. Chem Pap 72(8):1853–1860. https://doi.org/10.1007/s11696-018-0440-8

    Article  CAS  Google Scholar 

  7. Xu Y, Du Y (2003) Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm 250(1):215–226

    Article  CAS  Google Scholar 

  8. Bautista-Baños S, Hernandez-Lauzardo AN, Velazquez-del Valle MG, Hernández-López M, Barka EA, Bosquez-Molina E, Wilson CL (2006) Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot 25(2):108–118. https://doi.org/10.1016/j.cropro.2005.03.010

    Article  CAS  Google Scholar 

  9. Zahid N, Ali A, Manickam S, Siddiqui Y, Maqbool M (2012) Potential of chitosan-loaded nanoemulsions to control different Colletotrichum spp. and maintain quality of tropical fruits during cold storage. J Appl Microbiol 113(4):925–939. https://doi.org/10.1111/j.1365-2672.2012.05398.x

    Article  CAS  PubMed  Google Scholar 

  10. McHugh TH, Senesi E (2000) Apple wraps: A novel method to improve the quality and extend the shelf life of fresh-cut apples. J Food Sci 65(3):480–485. https://doi.org/10.1111/j.1365-2621.2000.tb16032.x

    Article  CAS  Google Scholar 

  11. Wong DW, Pavlath AE (1994) Development of edible coatings for minimally processed fruits. In: Baldwin EA, Bai J, Krochta JM, Nisperos-Carriedo M, Nisperos-Carriedo MO, Hagenmaier R (eds) Edible coatings and films to improve food quality. CRC Press LLC, US, 1:65. ISBN:9781566761130, 1566761131

  12. Amiri A, Ramezanian A, Mortazavi SM, Hosseini SM, Yahia E (2020) Shelf-life extension of pomegranate arils using chitosan nanoparticles loaded with Satureja hortensis essential oil. J Sci Food Agric. https://doi.org/10.1002/jsfa.11010

    Article  PubMed  Google Scholar 

  13. Arabpoor B, Yousefi S, Weisany W, Ghasemlou M (2021) Multifunctional coating composed of Eryngium campestre L. essential oil encapsulated in nanochitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocolloids 111:106394. https://doi.org/10.1016/j.foodhyd.2020.106394

  14. Dag D, Guner S, Oztop MH (2019) Physicochemical mechanisms of different biopolymers’(lysozyme, gum arabic, whey protein, chitosan) adsorption on green tea extract loaded liposomes. Int J Biol Macromol 138:473–482. https://doi.org/10.1016/j.ijbiomac.2019.07.106

    Article  CAS  PubMed  Google Scholar 

  15. Chen C, Peng X, Zeng R, Chen M, Wan C, Chen J (2016) Ficus hirta fruits extract incorporated into an alginate-based edible coating for Nanfeng mandarin preservation. Sci Hortic 202:41–48. https://doi.org/10.1016/j.postharvbio.2013.03.011

    Article  CAS  Google Scholar 

  16. Guillén F, Díaz-Mula HM, Zapata PJ, Valero D, Serrano M, Castillo S, Martínez-Romero D (2013) Aloe arborescens and Aloe vera gels as coatings in delaying postharvest ripening in peach and plum fruit. Postharvest Biol Technol 83:54–57. https://doi.org/10.1016/j.postharvbio.2013.03.011

    Article  CAS  Google Scholar 

  17. Martínez-Romero D, Zapata PJ, Guillén F, Paladines D, Castillo S, Valero D, Serrano M (2017) The addition of rosehip oil to Aloe gels improves their properties as postharvest coatings for maintaining quality in plum. Food Chem 217:585–592. https://doi.org/10.1016/j.foodchem.2016.09.035

    Article  CAS  PubMed  Google Scholar 

  18. Tripathi AD, Sharma R, Agarwal A, Haleem DR (2021) Nanoemulsions based edible coatings with potential food applications. Int J Biobased Plastics 1;3(1):112–25. https://doi.org/10.1080/24759651.2021.1875615

  19. Aydogdu A, Kirtil E, Sumnu G, Oztop MH, Aydogdu Y (2018) Utilization of lentil flour as a biopolymer source for the development of edible films. J Appl Polym Sci 135(23):46356. https://doi.org/10.1002/app.46356

    Article  CAS  Google Scholar 

  20. Bergo P, Sobral PJ (2007) Effects of plasticizer on physical properties of pigskin gelatin films. Food Hydrocolloids 21(8):1285–1289. https://doi.org/10.1016/j.foodhyd.2006.09.014

    Article  CAS  Google Scholar 

  21. Karthik C, Caroline DG, Priya MD, Prabha SP (2021) Synthesis, characterization of Ag-SiO2 nanocomposite and Its application in food packaging. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-020-01853-7

    Article  Google Scholar 

  22. Vieira MG, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: A review. Eur Polymer J 47(3):254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011

    Article  CAS  Google Scholar 

  23. Eshghi S, Hashemi M, Mohammadi A, Badii F, Mohammadhoseini Z, Ahmadi K (2014) Effect of nanochitosan-based coating with and without copper loaded on physicochemical and bioactive components of fresh strawberry fruit (Fragaria x ananassa Duchesne) during storage. Food Bioprocess Technol 7(8):2397–2409. https://doi.org/10.1007/s11947-014-1281-2

    Article  CAS  Google Scholar 

  24. Gao P, Zhu Z, Zhang P (2013) Effects of chitosan–glucose complex coating on postharvest quality and shelf life of table grapes. Carbohyd Polym 95(1):371–378. https://doi.org/10.1016/j.carbpol.2013.03.029

    Article  CAS  Google Scholar 

  25. Kumar P, Sethi S, Sharma RR, Srivastav M, Varghese E (2017) Effect of chitosan coating on postharvest life and quality of plum during storage at low temperature. Sci Hortic 226:104–109. https://doi.org/10.1016/j.scienta.2017.08.037

    Article  CAS  Google Scholar 

  26. Youssef AM, Assem FM, Abdel-Aziz ME, Elaaser M, Ibrahim OA, Mahmoud M, Abd El-Salam MH (2019) Development of bionanocomposite materials and its use in coating of Ras cheese. Food Chem 270:467–475. https://doi.org/10.1016/j.foodchem.2018.07.114

    Article  CAS  PubMed  Google Scholar 

  27. Salgado-Cruz MDLP, Salgado-Cruz J, García-Hernández AB, Calderón-Domínguez G, Gómez-Viquez H, Oliver-Espinoza R, Fernández-Martínez MC, Yáñez-Fernández J (2021) Chitosan as a Coating for Biocontrol in Postharvest Products: A Bibliometric Review. Membranes 11(6):421. https://doi.org/10.3390/membranes11060421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alalaiwe A, Carpinone P, Alshahrani S, Alsulays B, Ansari M, Anwer M, Alshehri S, Alshetaili A (2019) Influence of chitosan coating on the oral bioavailability of gold nanoparticles in rats. Saudi Pharmaceutical Journal 27(2):171–175. https://doi.org/10.1016/j.jsps.2018.09.011

    Article  PubMed  Google Scholar 

  29. Hadiyanto H, Christwardana M, Suzery M, Sutanto H, Nilamsari AM, Yunanda A (2019) Effects of carrageenan and chitosan as coating materials on the thermal degradation of microencapsulated phycocyanin from Spirulina sp. Int J Food Eng 15:5–6. https://doi.org/10.1515/ijfe-2018-0290

    Article  CAS  Google Scholar 

  30. Nair MS, Saxena A, Kaur C (2018) Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava L.). Food Chem 240:245–252. https://doi.org/10.1016/j.foodchem.2017.07.122

    Article  CAS  PubMed  Google Scholar 

  31. Gardesh AS, Badii F, Hashemi M, Ardakani AY, Maftoonazad N, Gorji AM (2016) Effect of nanochitosan based coating on climacteric behavior and postharvest shelf-life extension of apple cv. Golab Kohanz LWT 70:33–40. https://doi.org/10.1016/j.lwt.2016.02.002

    Article  CAS  Google Scholar 

  32. Gull A, Bhat N, Wani SM, Masoodi FA, Amin T, Ganai SA (2021) Shelf life extension of apricot fruit by application of nanochitosan emulsion coatings containing pomegranate peel extract. Food Chem 349:129149. https://doi.org/10.1016/j.foodchem.2021.129149

    Article  CAS  PubMed  Google Scholar 

  33. Ahmed F, Soliman FM, Adly MA, Soliman HA, El-Matbouli M, Saleh M (2019) Recent progress in biomedical applications of chitosan and its nanocomposites in aquaculture: A review. Res Vet Sci 126:68–82. https://doi.org/10.1016/j.rvsc.2019.08.005

    Article  CAS  PubMed  Google Scholar 

  34. González-Saucedo A, Barrera-Necha LL, Ventura-Aguilar RI, Correa-Pacheco ZN, Bautista-Baños S, Hernández-López M (2019) Extension of the postharvest quality of bell pepper by applying nanostructured coatings of chitosan with Byrsonima crassifolia extract (L.) Kunth. Postharvest Biol Technol 149:74–82. https://doi.org/10.1016/j.postharvbio.2018.11.019

    Article  CAS  Google Scholar 

  35. Salvia-Trujillo L, Rojas-Graü MA, Soliva-Fortuny R, Martín-Belloso O (2015) Use of antimicrobial nanoemulsions as edible coatings: impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biol Technol 105:8–16. https://doi.org/10.1016/j.postharvbio.2015.03.009

    Article  CAS  Google Scholar 

  36. Chang X, Hou Y, Liu Q, Hu Z, Xie Q, Shan Y, Li G, Ding S (2021) Physicochemical and antimicrobial properties of chitosan composite films incorporated with glycerol monolaurate and nano-TiO2. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2021.106846

    Article  Google Scholar 

  37. Dadvar AA, Vahidi J, Hajizadeh Z, Maleki A, Bayati MR (2021) Experimental study on classical and metaheuristics algorithms for optimal nano-chitosan concentration selection in surface coating and food packaging. Food Chem 335:127681

  38. Alotaibi MA, Tayel AA, Zidan NS, El Rabey HA (2019) Bioactive coatings from nano-biopolymers/plant extract composites for complete protection from mycotoxigenic fungi in dates. J Sci Food Agric 99(9):4338–4343. https://doi.org/10.1002/jsfa.9667

    Article  CAS  PubMed  Google Scholar 

  39. Barzegar M, Ghaderi Ghahfarokhi M, Sahari MA, Azizi MH (2016) Enhancement of thermal stability and antioxidant activity of thyme essential oil by encapsulation in chitosan nanoparticles. J Agric Sci Technol 18(7):1781–1792. http://jast.modares.ac.ir/article-23-9470-en.html

  40. Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81(3):463–469. https://doi.org/10.1016/j.ejpb.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  41. Detsi A, Kavetsou E, Kostopoulou I, Pitterou I, Pontillo AR, Tzani A, Christodoulou P, Siliachli A, Zoumpoulakis P (2020) Nanosystems for the encapsulation of natural products: the case of chitosan biopolymer as a matrix. Pharmaceutics 12(7):669. https://doi.org/10.3390/pharmaceutics12070669

    Article  CAS  PubMed Central  Google Scholar 

  42. Hassan FA, Abd El-Maged MH, El-Halim HA, Ramadan GS (2021) Effect of dietary chitosan, nano-chitosan supplementation and different japanese quail lines on growth performance, plasma constituents, carcass characteristics, antioxidant status and intestinal microflora population. J Anim Health Prod 9(2):119–131

    Google Scholar 

  43. Ma Z, Garrido-Maestu A, Jeong KC (2017) Application, mode of action, and in vivo activity of chitosan and its micro-and nanoparticles as antimicrobial agents: A review. Carbohyd Polym 176:257–265. https://doi.org/10.1016/j.carbpol.2017.08.082

    Article  CAS  Google Scholar 

  44. Homayonpour P, Jalali H, Shariatifar N, Amanlou M (2021) Effects of nano-chitosan coatings incorporating with free/nano-encapsulated cumin (Cuminum cyminum L.) essential oil on quality characteristics of sardine fillet. Int J Food Microbiol 341:109047. https://doi.org/10.1016/j.ijfoodmicro.2021.109047

  45. Alzandi AA, Naguib DM, Abas ASM (2021) Onion extract encapsulated on nano chitosan: a promising anticancer agent. J Gastrointest Cancer. https://doi.org/10.1007/s12029-020-00561-2

    Article  PubMed  Google Scholar 

  46. Ramezani Z, Zarei M, Raminnejad N (2015) Comparing the effectiveness of chitosan and nanochitosan coatings on the quality of refrigerated silver carp fillets. Food Control 51:43–48. https://doi.org/10.1016/j.foodcont.2014.11.015

    Article  CAS  Google Scholar 

  47. Asiri SM, Khan FA, Bozkurt A (2018) Synthesis of chitosan nanoparticles, chitosan-bulk, chitosan nanoparticles conjugated with glutaraldehyde with strong anti-cancer proliferative capabilities. Artif Cells Nanomed Biotechnol 46(sup3):S1152–S1161. https://doi.org/10.1080/21691401.2018.1533846

    Article  CAS  PubMed  Google Scholar 

  48. Fernández-Díaz C, Coste O, Malta EJ (2017) Polymer chitosan nanoparticles functionalized with Ulva ohnoi extracts boost in vitro ulvan immunostimulant effect in Solea senegalensis macrophages. Algal Res 26:135–142. https://doi.org/10.1016/j.algal.2017.07.008

    Article  Google Scholar 

  49. Oh JW, Chun SC, Chandrasekaran M (2019) Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agronomy 9(1):21. https://doi.org/10.3390/agronomy9010021

    Article  CAS  Google Scholar 

  50. Romanazzi G, Feliziani E, Baños SB, Sivakumar D (2017) Shelf life extension of fresh fruit and vegetables by chitosan treatment. Crit Rev Food Sci Nutr 57(3):579–601. https://doi.org/10.1080/10408398.2014.900474

    Article  CAS  PubMed  Google Scholar 

  51. Taheri A, Behnamian M, Dezhsetan S, Karimirad R (2020) Shelf life extension of bell pepper by application of chitosan nanoparticles containing Heracleum persicum fruit essential oil. Postharvest Biol Technol 170:111313. https://doi.org/10.1016/j.postharvbio.2020.111313

    Article  CAS  Google Scholar 

  52. Orellano MS, Porporatto C, Silber JJ, Falcone RD, Correa NM (2017) AOT reverse micelles as versatile reaction media for chitosan nanoparticles synthesis. Carbohyd Polym 171:85–93. https://doi.org/10.1016/j.carbpol.2017.04.074

    Article  CAS  Google Scholar 

  53. Rajabi H, Jafari SM, Rajabzadeh G, Sarfarazi M, Sedaghati S (2019) Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Colloids Surf, A 578:123644. https://doi.org/10.1016/j.colsurfa.2019.123644

    Article  CAS  Google Scholar 

  54. Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A (2013) Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm 455(1–2):219–228. https://doi.org/10.1016/j.ijpharm.2013.07.034

    Article  CAS  PubMed  Google Scholar 

  55. Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51. https://doi.org/10.1016/j.ijbiomac.2015.02.039

    Article  CAS  PubMed  Google Scholar 

  56. Luque-Alcaraz AG, Lizardi-Mendoza J, Goycoolea FM, Higuera-Ciapara I, Argüelles-Monal W (2016) Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier. RSC Adv 6(64):59250–59256. https://doi.org/10.1039/C6RA06563E

    Article  CAS  Google Scholar 

  57. Sotelo-Boyás ME, Correa-Pacheco ZN, Bautista-Baños S, Corona-Rangel ML (2017) Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. LWT 77:15–20. https://doi.org/10.1016/j.lwt.2016.11.022

    Article  CAS  Google Scholar 

  58. Jafari SM (2017) An overview of nanoencapsulation techniques and their classification. In: Seid Mahdi Jafari (eds) Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press, 1, 1–34. ISBN:978-0-12-809436-5. https://doi.org/10.1016/B978-0-12-809436-5.00001-X

  59. Salama HE, Aziz MS, Alsehli M (2019) Carboxymethyl cellulose/sodium alginate/chitosan biguanidine hydrochloride ternary system for edible coatings. Int J Biol Macromol 139:614–620. https://doi.org/10.1016/j.ijbiomac.2019.08.008

    Article  CAS  PubMed  Google Scholar 

  60. Senturk Parreidt T, Schott M, Schmid M, Müller K (2018) Effect of presence and concentration of plasticizers, vegetable oils, and surfactants on the properties of sodium-alginate-based edible coatings. Int J Mol Sci 19(3):742. https://doi.org/10.3390/ijms19030742

    Article  CAS  PubMed Central  Google Scholar 

  61. Suganya V, Anuradha V (2017) Microencapsulation and nanoencapsulation: a review. Int J Pharm Clin Res 9(3):233–239. https://doi.org/10.25258/ijpcr.v9i3.8324

  62. Tomadoni B, Ponce A, Pereda M, Ansorena MR (2019) Vanillin as a natural cross-linking agent in chitosan-based films: optimizing formulation by response surface methodology. Polym Testing 78:105935. https://doi.org/10.1016/j.polymertesting.2019.105935

    Article  CAS  Google Scholar 

  63. Correa-Pacheco ZN, Bautista-Baños S, Valle-Marquina MÁ, Hernández-López M (2017) The effect of nanostructured chitosan and chitosan-thyme essential oil coatings on Colletotrichum gloeosporioides growth in vitro and on cv Hass avocado and fruit quality. J Phytopathol 165(5):297–305. https://doi.org/10.1111/jph.12562

    Article  CAS  Google Scholar 

  64. Deng Z, Jung J, Simonsen J, Zhao Y (2017) Cellulose nanomaterials emulsion coatings for controlling physiological activity, modifying surface morphology, and enhancing storability of postharvest bananas (Musa acuminate). Food Chem 232:359–368. https://doi.org/10.1016/j.foodchem.2017.04.028

    Article  CAS  PubMed  Google Scholar 

  65. Nguyen VT, Nguyen DH, Nguyen HV (2020) Combination effects of calcium chloride and nanochitosan on the postharvest quality of strawberry (Fragaria x ananassa Duch.). Postharvest Biol Technol 162:111103. https://doi.org/10.1016/j.postharvbio.2019.111103

  66. Mohammadi A, Hashemi M, Hosseini SM (2016) Postharvest treatment of nanochitosan-based coating loaded with Zataria multiflora essential oil improves antioxidant activity and extends shelf-life of cucumber. Innov Food Sci Emerg Technol 33:580–588. https://doi.org/10.1016/j.ifset.2015.10.015

    Article  CAS  Google Scholar 

  67. Javaherzadeh R, Bafroee AT, Kanjari A (2020) Preservation effect of Polylophium involucratum essential oil incorporated poly lactic acid/nanochitosan composite film on shelf life and sensory properties of chicken fillets at refrigeration temperature. LWT 118:108783. https://doi.org/10.1016/j.lwt.2019.108783

    Article  CAS  Google Scholar 

  68. Shahbazi Y, Shavisi N (2018) Characterization of active nanochitosan film containing natural preservative agents. Nanomed Res J 3(2):109–116. https://doi.org/10.22034/NMRJ.2018.02.008

  69. Hasheminejad N, Khodaiyan F (2020) The effect of clove essential oil loaded chitosan nanoparticles on the shelf life and quality of pomegranate arils. Food Chem 309:125520. https://doi.org/10.1016/j.foodchem.2019.125520

    Article  CAS  PubMed  Google Scholar 

  70. Homayounpour P, Jalali H, Shariatifar N, Amanlou M, Khanjari A (2020) Protective effect of nanochitosan incorporated with free/nanoliposome Cumin (Cuminum cyminum L.) aqueous extract on sardine fish. J Aquat Food Prod Technol 29(9):949–961. https://doi.org/10.1080/10498850.2020.1819497

  71. Homayounpour P, Shariatifar N, Alizadeh‐Sani M (2021) Development of nanochitosan‐based active packaging films containing free and nanoliposome caraway (Carum carvi. L) seed extract. Food Sci Nutr 9(1):553–563. https://doi.org/10.1002/fsn3.2025

  72. Shaltout FA, El-Diasty EM, Hassan AM (2019) Effect of nanochitosan and onion extract as coating materials on the quality properties of chicken fillet meat during refrigeration. Global Veterinaria 21(6):368–372

    CAS  Google Scholar 

  73. Xoca-Orozco LÁ, Cuellar-Torres EA, González-Morales S, Gutiérrez-Martínez P, López-García U, Herrera-Estrella L, Vega-Arreguín J, Chacón-López A (2017) Transcriptomic analysis of avocado hass (Persea americana Mill) in the interaction system fruit-chitosan-Colletotrichum. Front Plant Sci 8:956. https://doi.org/10.3389/fpls.2017.00956

    Article  PubMed  PubMed Central  Google Scholar 

  74. Khaliq G, Ramzan M, Baloch AH (2019) Effect of Aloe vera gel coating enriched with Fagonia indica plant extract on physicochemical and antioxidant activity of sapodilla fruit during postharvest storage. Food Chem 286:346–353. https://doi.org/10.1016/j.foodchem.2019.01.135

    Article  CAS  PubMed  Google Scholar 

  75. Nguyen HV, Nguyen DH (2020) Effects of nanochitosan and chitosan coating on the postharvest quality, polyphenol oxidase activity and malondialdehyde content of strawberry (Fragaria x ananassa Duch.). J Hortic Postharvest Res 3(1):11–24. https://doi.org/10.22077/JHPR.2019.2698.1082

  76. Yazgan H (2020) Investigation of antimicrobial properties of sage essential oil and its nanoemulsion as antimicrobial agent. LWT. https://doi.org/10.1016/j.lwt.2020.109669

    Article  Google Scholar 

  77. Arezoo E, Mohammadreza E, Maryam M, Abdorreza MN (2020) The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. Int J Biol Macromol 157:743–751. https://doi.org/10.1016/j.ijbiomac.2019.11.244

    Article  CAS  PubMed  Google Scholar 

  78. de Souza AG, Dos Santos NM, da Silva Torin RF, dos Santos Rosa D (2020) Synergic antimicrobial properties of Carvacrol essential oil and montmorillonite in biodegradable starch films. Int J Biol Macromol 164:1737–1747. https://doi.org/10.1016/j.ijbiomac.2020.07.226

    Article  CAS  PubMed  Google Scholar 

  79. Mendes JF, Norcino LB, Martins HH, Manrich A, Otoni CG, Carvalho EE, Piccoli RH, Oliveira JE, Pinheiro AC, Mattoso LH (2020) Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil. Food Hydrocolloids 100:105428. https://doi.org/10.1016/j.foodhyd.2019.105428

    Article  CAS  Google Scholar 

  80. Shakour N, Khoshkhoo Z, Akhondzadeh Basti A, Khanjari A, Mahasti Shotorbani P (2021) Investigating the properties of PLA‐nanochitosan composite films containing Ziziphora Clinopodioides essential oil and their impacts on oxidative spoilage of Oncorhynchus mykiss fillets. Food Sci Nutr

  81. Yuan G, Chen X, Li D (2016) Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Res Int 89:117–128. https://doi.org/10.1016/j.foodres.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  82. Al-Tayyar NA, Youssef AM, Al-Hindi RR (2020) Antimicrobial packaging efficiency of ZnO-SiO2 nanocomposites infused into PVA/CS film for enhancing the shelf life of food products. Food Packag Shelf Life 25:100523. https://doi.org/10.1016/j.fpsl.2020.100523

    Article  Google Scholar 

  83. Al-Sherbini ASA, Ghannam HE, El-Ghanam GM, El-Ella AA, Youssef AM (2019) Utilization of chitosan/Ag bionanocomposites as eco-friendly photocatalytic reactor for Bactericidal effect and heavy metals removal. Heliyon 5(6):01980. https://doi.org/10.1016/j.heliyon.2019.e01980

    Article  Google Scholar 

  84. Sangeetha K, Alsharani FA, Vinodhini PA, Sudha PN, Jayachandran V, Sukumaran A (2018) Antimicrobial efficacy of novel nanochitosan-based mat via electrospinning technique. Polym Bull 75(12):5599–5618. https://doi.org/10.1007/s00289-018-2324-z

    Article  CAS  Google Scholar 

  85. Van Hoa N, Vuong NTH, Minh NC et al (2020) Squid pen chitosan nanoparticles: small size and high antibacterial activity. Polym Bull. https://doi.org/10.1007/s00289-020-03488-7

    Article  Google Scholar 

  86. Tiplea RE, Lemnaru GM, Trușcă RD, Holban A, Kaya MGA, Dragu LD, Ficai D, Ficai A, Bleotu C (2020) Antimicrobial films based on chitosan, collagen, and ZnO for skin tissue regeneration. Biointerface res. Appl Chem 11:11985–11995. https://doi.org/10.33263/BRIAC114.1198511995

  87. Alghuthaymi MA, Diab AM, Elzahy AF, Mazrou KE, Tayel AA, Moussa SH (2021) Green biosynthesized selenium nanoparticles by cinnamon extract and their antimicrobial activity and application as edible coatings with nano-chitosan. J Food Qual. https://doi.org/10.1155/2021/6670709

    Article  Google Scholar 

  88. Ahmed SB, Mohamed HI, Al-Subaie AM, Al-Ohali AI, Mahmoud NM (2021) Investigation of the antimicrobial activity and hematological pattern of nano-chitosan and its nano-copper composite. Sci Rep 11(1):1–9. https://doi.org/10.1038/s41598-021-88907-z

    Article  CAS  Google Scholar 

  89. Spricigo PC, Pilon L, Trento JP, de Moura MR, Bonfim KS, Mitsuyuki MC, Mattoso LH, Ferreira MD (2021) Nano-chitosan as an antimicrobial agent in preservative solutions for cut flowers. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.6766

    Article  Google Scholar 

  90. Muzaffar S, Abbas M, Siddiqua UH, Arshad M, Tufail A, Ahsan M, Alissa SA, Abubshait SA, Abubshait HA, Iqbal M (2021) Enhanced mechanical, UV protection and antimicrobial properties of cotton fabric employing nanochitosan and polyurethane based finishing. J Market Res 11:946–956. https://doi.org/10.1016/j.jmrt.2021.01.018

    Article  CAS  Google Scholar 

  91. Zhang X, Zhang Z, Wu W, Yang J, Yang Q (2021) Preparation and characterization of chitosan/Nano-ZnO composite film with antimicrobial activity. Bioprocess Biosyst Eng 44(6):1193–1199. https://doi.org/10.1007/s00449-021-02521-x

    Article  CAS  PubMed  Google Scholar 

  92. Sami R, Khojah E, Elhakem A, Benajiba N, Helal M, Alhuthal N, Alzahrani SA, Alharbi M, Chavali M (2021) Performance study of nano/SiO2 films and the antimicrobial application on cantaloupe fruit shelf-life. Appl Sci 11(9):3879

    Article  CAS  Google Scholar 

  93. Abdeltwab WM, Abdelaliem YF, Metry WA, Eldeghedy M (2019) Antimicrobial effect of chitosan and nanochitosan against some pathogens and spoilage microorganisms. J Adv Lab Res Biol 10(1):8–15

    CAS  Google Scholar 

  94. Alqahtani FY, Aleanizy FS, El Tahir E, Alquadeib BT, Alsarra IA, Alanazi JS, Abdelhady HG (2019) Preparation, characterization, and antibacterial activity of diclofenac-loaded chitosan nanoparticles. Saudi Pharm J 27(1):82–87. https://doi.org/10.1016/j.jsps.2018.08.001

    Article  PubMed  Google Scholar 

  95. Jannatyha N, Shojaee-Aliabadi S, Moslehishad M, Moradi E (2020) Comparing mechanical, barrier and antimicrobial properties of nanocellulose/CMC and nanochitosan/CMC composite films. Int J Biol Macromol 164:2323–2328. https://doi.org/10.1016/j.ijbiomac.2020.07.249

    Article  CAS  PubMed  Google Scholar 

  96. Ngo TM, Nguyen TH, Dang TM, Tran TX, Rachtanapun P (2020) Characteristics and antimicrobial properties of active edible films based on pectin and nanochitosan. Int J Mol Sci 21(6):2224. https://doi.org/10.3390/ijms21062224

    Article  CAS  PubMed Central  Google Scholar 

  97. Nugraheni PS, Soeriyadi AH, Ustadi WB (2019) Comparison of formulation methods to produce nanochitosan as inhibitor agent for bacterial growth. J Eng Technol Sci 51(3):430–441

    Article  CAS  Google Scholar 

  98. Priyadarshi R, Rhim JW (2020) Chitosan-based biodegradable functional films for food packaging applications. Innov Food Sci Emerg Technol 62:102346. https://doi.org/10.1016/j.ifset.2020.102346

    Article  CAS  Google Scholar 

  99. El-Mohamedya RSR, Abd El-Aziz ME, Kamel S (2019) Antifungal activity of chitosan nanoparticles against some plant pathogenic fungi in vitro. Agric Eng Int CIGR J 21:201–209

    Google Scholar 

  100. Sun X, Wu Q, Picha DH, Ferguson MH, Ndukwe IE, Azadi P (2021) Comparative performance of bio-based coatings formulated with cellulose, chitin, and chitosan nanomaterials suitable for fruit preservation. Carbohydr Polym 259:117764. https://doi.org/10.1016/j.carbpol.2021.117764

    Article  CAS  PubMed  Google Scholar 

  101. Barrera-Necha LL, Correa-Pacheco ZN, Bautista-Baños S, Hernández-López M, Jiménez JE, Mejía AF (2018) Synthesis and characterization of chitosan nanoparticles loaded botanical extracts with antifungal activity on Colletotrichum gloeosporioides and Alternaria species. Adv Microbiol 8(04):286. https://doi.org/10.4236/aim.2018.84019

    Article  CAS  Google Scholar 

  102. KhademiBami L (2019) Nano-chitosan wood treatment: a combined fire-retardant and antifungal treatment. Doctoral dissertation, Sustainable Bioproducts

  103. Sahariah P, Masson M (2017) Antimicrobial chitosan and chitosan derivatives: a review of the structure–activity relationship. Biomacromol 18(11):3846–3868. https://doi.org/10.1021/acs.biomac.7b01058

    Article  CAS  Google Scholar 

  104. Sogvar OB, Saba MK, Emamifar A, Hallaj R (2016) Influence of nano-ZnO on microbial growth, bioactive content and postharvest quality of strawberries during storage. Innov Food Sci Emerg Technol 35:168–176. https://doi.org/10.1016/j.ifset.2016.05.005

    Article  CAS  Google Scholar 

  105. Alboghbeish H, Khodanazary A (2019) The comparison of quality characteristics of refrigerated Carangoides coeruleopinnatus fillets with chitosan and nanochitosan coating. Turk J Fish Aquat Sci 19(11):957–967

    Article  Google Scholar 

  106. Kamani J, Motalbei Moghanjoghi AA, Razavilar V, Rokni N (2020) Effects of nanochitosan with and without sodium acetate coating on Pseudomonas fluorescens and the quality of refrigerated rainbow trout filets. Iran J Fisheries Sci 19(3):1479–1499. https://doi.org/10.22092/ijfs.2020.120788

  107. Asgari-Targhi G, Iranbakhsh A, Ardebili ZO (2018) Potential benefits and phytotoxicity of bulk and nanochitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiol Biochem 127:393–402. https://doi.org/10.1016/j.plaphy.2018.04.013

    Article  CAS  PubMed  Google Scholar 

  108. Bandara S, Du H, Carson L, Bradford D, Kommalapati R (2020) Agricultural and biomedical applications of chitosan-based nanomaterials. Nanomaterials 10(10):1903

    Article  CAS  Google Scholar 

  109. Lessa EF, Nunes ML, Fajardo AR (2018) Chitosan/waste coffee-grounds composite: An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water. Carbohydr Polym 189:257–266. https://doi.org/10.1016/j.carbpol.2018.02.018

    Article  CAS  PubMed  Google Scholar 

  110. Youssef AM, El-Sayed SM, El-Sayed HS, Salama HH, Dufresne A (2016) Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohydr Polym 151:9–19. https://doi.org/10.1016/j.carbpol.2016.05.023

    Article  CAS  PubMed  Google Scholar 

  111. Youssef AM, El-Gendy A, Kamel S (2015) Evaluation of corn husk fibers reinforced recycled low density polyethylene composites. Mater Chem Phys 152:26–33. https://doi.org/10.1016/j.matchemphys.2014.12.004

    Article  CAS  Google Scholar 

  112. Di Pierro P, Sorrentino A, Mariniello L, Giosafatto CVL, Porta R (2011) Chitosan/whey protein film as active coating to extend Ricotta cheese shelf-life. LWT-Food Sci Technol 44(10):2324–2327. https://doi.org/10.1016/j.lwt.2010.11.031

    Article  CAS  Google Scholar 

  113. Moustafa H, Youssef AM, Darwish NA, Abou-Kandil AI (2019) Eco-friendly polymer composites for green packaging: Future vision and challenges. Compos B Eng 172:16–25. https://doi.org/10.1016/j.compositesb.2019.05.048

    Article  CAS  Google Scholar 

  114. Ahmed S, Mohamed H, Al-Subaie A, Al-Ohali A, Mahmoud N (2021) Investigation of the antimicrobial activity and hematological pattern of nano-chitosan and its developed nano-copper composite. https://doi.org/10.21203/rs.3.rs-149486/v1

  115. Caldas BS, Nunes CS, Panice MR, Scariot DB, Nakamura CV, Muniz EC (2021) Manufacturing micro/nano chitosan/chondroitin sulfate curcumin-loaded hydrogel in ionic liquid: a new biomaterial effective against cancer cells. Int J Biol Macromol 180:88–96

    Article  CAS  Google Scholar 

  116. Kahdestani SA, Shahriari MH, Abdouss M (2021) Synthesis and characterization of chitosan nanoparticles containing teicoplanin using sol–gel. Polym Bull 78(2):1133–1148. https://doi.org/10.1007/s00289-020-03134-2

    Article  CAS  Google Scholar 

  117. Rahmani S, Barzegar M (2021) One-pot synthesis of dibenzaldehyde-terminated poly (ethylene glycol) for preparation of dynamic chitosan-based amphiphilic hydrogels. Polym Bull 78(6):2887–2909. https://doi.org/10.1007/s00289-020-03244-x

    Article  CAS  Google Scholar 

  118. Fernandes AM, Abdalhai MH, Ji J, Xi BW, Xie J, Sun J, Noeline R, Lee BH, Sun X (2015) Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes–chitosan–bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Biosens Bioelectron 63:399–406. https://doi.org/10.1016/j.bios.2014.07.054

    Article  CAS  PubMed  Google Scholar 

  119. Luo Y, Wang Q (2014) Zein-based micro-and nano-particles for drug and nutrient delivery: A review. J Appl Polym Sci 131:16. https://doi.org/10.1002/app.40696

    Article  CAS  Google Scholar 

  120. Sivanesan I, Muthu M, Gopal J, Hasan N, Kashif Ali S, Shin J, Oh JW (2021) Nanochitosan: commemorating the metamorphosis of an exoskeletal waste to a versatile nutraceutical. Nanomaterials 11(3):821

    Article  CAS  Google Scholar 

  121. Vimal S, Majeed SA, Nambi KS, Madan N, Farook MA, Venkatesan C, Taju G, Venu S, Subburaj R, Thirunavukkarasu AR, Hameed AS (2014) Delivery of DNA vaccine using chitosan–tripolyphosphate (CS/TPP) nanoparticles in Asian sea bass, Lates calcarifer (Bloch, 1790) for protection against nodavirus infection. Aquaculture 420:240–246. https://doi.org/10.1016/j.aquaculture.2013.11.017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DGC and CK contributed in the conception of the work, design, data collection, data analysis and interpretation, critical revision, writing and final approval of the version to be published. SPP assisted in critical reviews, discussion of concepts and data analysis.

Corresponding author

Correspondence to D. G. Caroline.

Ethics declarations

Conflict of interest

There are none to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, C., Caroline, D.G. & Pandi Prabha, S. Nanochitosan augmented with essential oils and extracts as an edible antimicrobial coating for the shelf life extension of fresh produce: a review. Polym. Bull. 79, 8009–8032 (2022). https://doi.org/10.1007/s00289-021-03901-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03901-9

Keywords

Navigation