Skip to main content
Log in

Comparison of different transformation methods for Aspergillus giganteus

  • Technical Note
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract.

Four different transformation methods were tested and compared in an attempt to facilitate the genetic transformation of Aspergillus giganteus, the producer of an antifungal protein (AFP). The fungus was transformed to hygromycin B resistance, using the hph gene of Escherichia coli by protoplast transformation, electroporation, biolistic transformation, and Agrobacterium tumefaciens-mediated transformation. Electroporation and biolistic transformation were found to be inappropriate for transforming A. giganteus, due to a low transformation yield. The conventional transformation technique based on protoplasts yielded up to 55 transformants in 108 protoplasts/µg DNA and was enhanced to 140-fold by A. tumefaciens-mediated transfer of its T-DNA. Here, the germination time prior to cocultivation and the fungus:bacterium ratio were found to alter the transformation efficiency. Southern blot analysis revealed that the A. giganteus transformants contained a randomly integrated single T-DNA copy, whereas multiple integration events were frequent in transformants obtained by the protoplast method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

References

  • Abuodeh RO, Orbach MJ, Mandel MA, Das A, Galgiani JN (2000) Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J Infect Dis 181:2106–2110

    CAS  PubMed  Google Scholar 

  • Beijersbergen A, Den Dulk-Ras A, Schilperoort RA, Hooykaas PJJ (1992) Conjugative transfer by the virulence system of Agrobacterium tumefaciens. Science 256:1324–1327

    CAS  Google Scholar 

  • Brown JS, Aufauvre-Brown A, Holden DW (1998) Insertional mutagenesis of Aspergillus fumigatus. Mol Gen Genet 259:327–335

    Article  CAS  PubMed  Google Scholar 

  • Bundock P, Dulk-Ras A den, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 3:3206–3214

    Google Scholar 

  • Cove DJ (1966) The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113:51–56

    CAS  PubMed  Google Scholar 

  • Den Dulk-Ras A, Hooykaas PJJ (1995) Electroporation of Agrobacterium tumefaciens. In: Nickoloff JA (ed) Plant cell electroporation and electrofusion protocols. (Methods in molecular biology, vol 55) Humana Press, Totowa, N.J pp 63–73

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:232–238

    Google Scholar 

  • Fungaro MH, Rech E, Muhlen GS, Vainstein MH, Pascon RC, Queiroz MV de, Pizzirani-Kleiner AA, Azevedo JL de (1995) Transformation of Aspergillus nidulans by microprojectile bombardment on intact conidia. FEMS Microbiol Lett 125:293–297

    Article  CAS  PubMed  Google Scholar 

  • Gouka RJ, Gerk C, Hooykaas PJJ, Bundock P, Musters W, Verrips CT, Groot MJA de (1999) Transformation of Aspergillus awamori by Agrobacterium tumefaciens–mediated homologous recombination. Nat Biotechnol 17:598–601

    Article  CAS  PubMed  Google Scholar 

  • Groot MJA de, Bundock P, Hooykaas PJJ, Beijersbergen A (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    PubMed  Google Scholar 

  • Hanif M, Pardo AG, Gorfer M, Raudaskoski M (2002) T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr Genet 41:183–188

    Article  CAS  PubMed  Google Scholar 

  • Lacadena J, Martinez del Pozo A, Gasset M, Patino B, Campos-Olivas R, Vazquez C, Martinez-Ruiz A, Mancheno JM, Onaderra M, Gavilanes JG (1995) Characterization of the antifungal protein secreted by the mould Aspergillus giganteus. Arch Biochem Biophys 324:273–281

    CAS  PubMed  Google Scholar 

  • Malonek S, Meinhardt F (2001) Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii. Curr Genet 40:152–155

    CAS  PubMed  Google Scholar 

  • Meyer V, Wedde M, Stahl U (2002) Transcriptional regulation of the antifungal protein in Aspergillus giganteus. Mol Genet Genomics 266:747–757

    CAS  PubMed  Google Scholar 

  • Miller H (1987) Practical aspects of preparing phage and plasmid DNA: growth, maintenance and storage of bacteria and bacteriophage. Methods Enzymol 152:145–170

    CAS  PubMed  Google Scholar 

  • Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173–180

    CAS  Google Scholar 

  • Mysore KS, Kumar CT, Gelvin SB (2000) Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. Plant J 21:9–16

    Article  CAS  PubMed  Google Scholar 

  • Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, Hondel CAMJJ van den (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124

    CAS  PubMed  Google Scholar 

  • Ruiz-Díez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509

    CAS  PubMed  Google Scholar 

  • Theis T, Wedde M, Meyer V, Stahl U (2003) The antifungal protein from Aspergillus giganteus causes membrane permeabilization. Antimicrob Agents Chemother 47:588–93

    Article  CAS  PubMed  Google Scholar 

  • Thompson JR, Register E, Curotto J, Kurtz M, Kelly R (1998) An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast 14:565–571

    Article  CAS  PubMed  Google Scholar 

  • Vila L, Lacadena V, Fontanet P, Pozo AM del, Segundo BS (2001) A protein from the mold Aspergillus giganteus is a potent inhibitor of fungal plant pathogens. Mol Plant-Microbe Interact 14:1327–1331

  • Wnendt S, Jacobs M, Stahl U (1990) Transformation of Aspergillus giganteus to hygromycin B resistance. Curr Genet 17:21–24

    CAS  PubMed  Google Scholar 

  • Yelton MM, Hamer JE, Timberlake WE (1984) Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci USA 81:1470–1474

    CAS  Google Scholar 

Download references

Acknowledgements.

We would like to thank Susanne Engelhardt and Barbara Walewska for technical assistance. We thank also Cees van den Hondel and Paul Hooykaas for providing us with the plasmids pAN7-1 and pUR5750, respectively. We are grateful to Caroline Michielse for helpful suggestions regarding A. tumefaciens-mediated transformation. The work was carried out in compliance with the current German laws governing genetic experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Meyer.

Additional information

Communicated by U. Kück

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, V., Mueller, D., Strowig, T. et al. Comparison of different transformation methods for Aspergillus giganteus . Curr Genet 43, 371–377 (2003). https://doi.org/10.1007/s00294-003-0406-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0406-3

Keywords.

Navigation