Skip to main content
Log in

An optimized transformation protocol for Lipomyces starkeyi

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

We report the development of an efficient genetic transformation system for Lipomyces starkeyi based on a modified lithium acetate transformation protocol. L. starkeyi is a highly lipogenic yeast that grows on a wide range of substrates. The initial transformation rate for this species was extremely low, and required very high concentrations of DNA. A systematic approach for optimizing the protocol resulted in an increase in the transformation efficiency by four orders of magnitude. Important parameters included cell density, the duration of incubation and recovery periods, the heat shock temperature, and the concentration of lithium acetate and carrier DNA within the transformation mixture. We have achieved efficiencies in excess of 8,000 transformants/µg DNA, which now make it possible to screen libraries in the metabolic engineering of this yeast. Metabolic engineering based on this transformation system could improve lipogenesis and enable formation of higher value products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99:3051–3056

    Article  CAS  PubMed  Google Scholar 

  • Berardi E, Thomas DY (1990) An effective transformation method for Hansenula polymorpha. Curr Genet 18:169–170. doi:10.1007/BF00312606

    Article  CAS  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. doi:10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  • Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/ss carrier DNA/PEG method. Nat Protoc 2:31–34. doi:10.1038/nprot.2007.13

    Article  CAS  PubMed  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  CAS  PubMed  Google Scholar 

  • Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/ss-DNA/PEG procedure. Yeast 11:355–360. doi:10.1002/yea.320110408

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW, Nelson SS, Mahan SD (2011) Metabolically engineered yeasts for the production of ethanol and other products from xylose and cellobiose. US Patent Application 20110262983

  • Laplaza JM, Torres BR, Jin YS, Jeffries TW (2006) Sh Ble and Cre adapted for functional genomics and metabolic engineering of Pichia stipitis. Enzym Microb Technol 38:741–747. doi:10.1016/j.enzmictec.2005.07.024

    Article  CAS  Google Scholar 

  • Lin J, Shen H, Tan H, Zhao X, Wu S, Hu C, Zhao SK (2011) Lipid production by Lipomyces starkeyi cells in glucose solution without auxiliary nutrients. J Biotechnol 152:184–188. doi:10.1016/j.jbiotec.2011.02.010

    Article  CAS  PubMed  Google Scholar 

  • Pham TA, Kawai S, Kono E, Murata K (2011) Visualization of the synergistic effect of lithium acetate and single-stranded carrier DNA on Saccharomyces cerevisiae transformation. Curr Genet 57:233–239. doi:10.1007/s00294-011-0341-7

    Article  CAS  PubMed  Google Scholar 

  • Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–346. doi:10.1007/BF00340712

    Article  CAS  PubMed  Google Scholar 

  • Schiestl RH, Manivasakam P, Woods RA, Gietz RD (1993) Introducing DNA into yeast by transformation. Methods 5:79–85. doi:10.1006/meth.1993.1011

    Article  CAS  Google Scholar 

  • Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9. doi:10.1016/j.ymben.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  • Tripp JD, Lilley JL, Wood WN, Lewis LK (2013) Enhancement of plasmid DNA transformation efficiencies in early stationary-phase yeast cell cultures. Yeast 30:191–200. doi:10.1002/yea.2951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walther A, Wendland J (2003) An improved transformation protocol for the human fungal pathogen Candida albicans. Curr Genet 42:339–343. doi:10.1007/s00294-002-0349-0

    Article  CAS  PubMed  Google Scholar 

  • Wang TT, Choi YJ, Lee BH (2001) Transformation systems of non-Saccharomyces yeasts. Crit Rev Biotechnol 21:177–218

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Wan X, Zhang Y, Jiang M (2011) Production of γ-linolenic acid using a novel heterologous expression system in the oleaginous yeast Lipomyces kononenkoae. Biotechnol Lett 33:1993–1998

    Article  CAS  PubMed  Google Scholar 

  • Wild R, Patil S, Popovi M, Zappi M, Dufreche S, Bajpai R (2010) Lipids from Lipomyces starkeyi. Food Technol Biotechnol 48:329–335

    CAS  Google Scholar 

  • Yehuda H, Droby S, Wisniewski M, Goldway M (2001) A transformation system for the biocontrol yeast, Candida oleophila, based on hygromycin B resistance. Curr Genet 40:282–287

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Kong X, Hua Y, Feng B, Zhao ZK (2008) Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lipid Sci Tech 110:405–412. doi:10.1002/ejlt.200700224

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the Department of Energy Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). CHC was supported in part through a Grant entitled “Investigation of Lipid Accumulation in Lipomyces starkeyi” awarded by the Graduate School of University of Wisconsin-Madison to TWJ. CHC gratefully acknowledges Kenneth Hammel for sponsorship at the USDA Forest Products Laboratory.

Conflict of interest

TWJ is the president and owner of Xylome, a private entity. However, the research carried out in this program was conducted independently of Xylome, and the authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Jeffries.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvey, C.H., Willis, L.B. & Jeffries, T.W. An optimized transformation protocol for Lipomyces starkeyi . Curr Genet 60, 223–230 (2014). https://doi.org/10.1007/s00294-014-0427-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-014-0427-0

Keywords

Navigation