Skip to main content
Log in

Gene expression and metabolite changes during Tuber magnatum fruiting body storage

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the impact of different 4 °C post-harvest storage periods on the quality of the white truffle Tuber magnatum. The expression of selected genes and the profiles of non-volatile metabolites have been analyzed. The up-regulation of genes related to cell wall metabolism and to a putative laccase points to cell wall modifications and browning events during cold storage. Time course RT-qPCR experiments have demonstrated that such transcription events probably depend on the ripening status, since this is delayed in partially ripe fruiting bodies. Changes in the concentrations of linoleate-derived metabolites occur during the first 3 days of considered cold storage, while the other metabolites, such as the amino acids, do not change. Taken together, the results demonstrate that complex molecular events occur in white truffles in the post-harvest period and before they are used as fresh products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbà S, Ghignone S, Bonfante P (2006) A dehydration–inducible gene in the truffle Tuber borchii identifies a novel group of dehydrins. BMC Genomics 7:39

    Article  Google Scholar 

  • Balestrini R, Mainieri D, Soragni E, Garnero L, Rollino S, Viotti A, Ottonello S, Bonfante P (2000) Differential expression of chitin synthase III and IV mRNAs in ascomata of Tuber borchii Vittad. Fungal Genet Biol 3:219–232

    Article  Google Scholar 

  • Brodhun F, Feussner I (2011) Oxylipins in fungi. FEBS J 278:1047–1063

    Article  PubMed  CAS  Google Scholar 

  • Brodowsky ID, Hamberg M, Oliw EH (1992) A linoleic acid (8R)-dioxygenase and hydroperoxide isomerase of the fungus Gaeumannomyces graminis. J Biol Chem 267:14738–14745

    PubMed  CAS  Google Scholar 

  • Cevallos-Cevallos JM, Reyes-De-Corcuera JI, Etxeberria E, Danyluk MD, Rodrick GE (2009) Metabolomic analysis in food science: a review. Trends Food Sci Technol 20:557–566

    Article  CAS  Google Scholar 

  • Culleré L, Ferreira V, Venturini ME, Marco P, Blanco D (2013) Chemical and sensory effects of the freezing process on the aroma profile of black truffles (Tuber melanosporum). Food Chem 136:518–525

    Article  PubMed  Google Scholar 

  • Eastwood DC, Bains NK, Henderson J, Burton KS (2011) Genome organization and transcription response to harvest of two metallothionein-like genes in Agaricus bisporus fruiting bodies. J Microbiol Biotechnol 21:455–463

    Article  PubMed  CAS  Google Scholar 

  • Gao JM, Wang CJ, Zhang AL, Liu JK (2001) A new trihydroxy fatty acid from the Ascomycete, Chinese truffle Tuber indicum. Lipids 36:1365–1370

    Article  PubMed  CAS  Google Scholar 

  • Garnero L, Lazzari B, Mainieri D, Viotti A, Bonfante P (2000) TMchs4, a class IV chitin synthase gene from the ectomycorrhizal Tuber magnatum. Mycol Res 6:703–707

    Article  Google Scholar 

  • Hajjar SE, Massantini R, Botondi R, Kefalas P, Mencarelli F (2010) Influence of high carbon dioxide and low oxygen on the postharvest physiology of fresh truffles. Postharvest Biol Technol 58:36–41

    Article  CAS  Google Scholar 

  • Jernerén F, Oliw EH (2012) The fatty acid 8,11-diol synthase of Aspergillus fumigatus is inhibited by imidazole derivatives and unrelated to PpoB. Lipids 47:707–17

  • Kanda K, Sato T, Suzuki S, Ishii S, Ejiri S, Enei H (1996) Relationships between tyrosinase activity and gill browning during preservation of Lentinus edodes fruit-bodies. Biosci Biotechnol Biochem 60:479–480

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mazur P, Meyers HV, Nakanishi K, El-Zayat AAE, Champe SP (1990) Structural elucidation of sporogenic fatty acid metabolites from Aspergillus nidulans. Tetrahedron Lett 31:3837–3840

    Article  CAS  Google Scholar 

  • Mazur P, Nakanishi K, Elzayat AAE, Champe SP (1991) Structure and synthesis of sporogenic Psi factors from Aspergillus nidulans. J Chem Soc Chem Commun 20:1486–1487

    Article  Google Scholar 

  • Mello A, Murat C, Bonfante P (2006) Truffles: much more than a prized and local fungal delicacy. FEMS Microbiol Lett 260:1–8

    Article  PubMed  CAS  Google Scholar 

  • Miranda M, Zarivi O, Bonfigli A, Porretta R, Aimola P, Pacioni G, Ragnelli AM (1996) White truffles, like black ones, are tyrosinase positive. Plant Sci 120:29–36

    Article  CAS  Google Scholar 

  • Nagai M, Kawata M, Watanabe H, Ogawa M, Saito K, Takesawa T, Kanda K, Sato T (2003) Important role of fungal intracellular laccase for melanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology 149:2455–2462

    Article  PubMed  CAS  Google Scholar 

  • Nazzaro F, Fratianni F, Picariello G, Coppola R, Reale A, Di Luccia A (2007) Evaluation of gamma rays influence on some biochemical and microbiological aspects in black truffles. Food Chem 103:344–354

    Article  CAS  Google Scholar 

  • O’Gorman A (2010) Metabolic profiling and fingerprinting for the detection and discrimination of mechanical damage in mushrooms (Agaricus bisporus) during storage. Doctoral Thesis, Dublin Institute of Technology, Dublin, Ireland

  • O’Gorman A, Barry-Ryan C, Frias JM (2012) Evaluation and identification of markers of damage in mushrooms (Agaricus bisporus) postharvest using a GC/MS metabolic profiling approach. Metabolomics 8:120–132

    Article  Google Scholar 

  • Pennazza G, Fanali C, Santonico M, Dugo L, Cucchiarini L, Dachà M, D’Amico A, Costa R, Dugo P, Mondello L (2013) Electronic nose and GC-MS analysis of volatile compounds in Tuber magnatum Pico: evaluation of different storage conditions. Food Chem 136:668–674

    Article  PubMed  CAS  Google Scholar 

  • Reale A, Sorrentino E, Iacumin L, Tremonte P, Manzano M, Maiuro L, Comi G, Coppola R, Succi M (2009) Irradiation treatments to improve the shelf life of fresh black truffles (truffles preservation by gamma-rays). J Food Sci 74:M196–M200

    Article  PubMed  CAS  Google Scholar 

  • Rivera CS, Blanco D, Salvador ML, Venturini ME (2010) Shelf life extension of fresh Tuber aestivum and Tuber melanosporum truffles by modified atmosphere packaging with microperforated films. J Food Sci 75:225–233

    Article  Google Scholar 

  • Sakamoto Y, Nakade K, Sato T (2009) Characterization of the post-harvest changes in gene transcription in the gill of the Lentinula edodes fruiting body. Curr Genet 55:409–423

    Article  PubMed  CAS  Google Scholar 

  • Saltarelli R, Ceccaroli P, Cesari P, Barbieri E, Stocchi V (2008) Effect of storage on biochemical and microbiological parameters of edible truffle species. Food Chem 109:8–16

    Article  CAS  Google Scholar 

  • Villares A, Garcıa-Lafuente A, Guillamon E, Ramos A (2012) Identification and quantification of ergosterol and phenolic compounds occurring in Tuber spp. truffles. J Food Compost Anal 26:177–182

    Article  CAS  Google Scholar 

  • Zampieri E, Balestrini R, Kohler A, Abbà S, Martin F, Bonfante P (2011) The Perigord black truffle responds to cold temperature with an extensive reprogramming of its transcriptional activity. Fungal Genet Biol 48:585–591

    Article  PubMed  CAS  Google Scholar 

  • Zarivi O, Bonfigli A, Colafarina S, Aimola P, Ragnelli AM, Pacioni G, Miranda M (2011) Tyrosinase expression during black truffle development: from free living mycelium to ripe fruit body. Phytochemistry 72:2317–2324

    Article  PubMed  CAS  Google Scholar 

  • Zarivi O, Bonfigli A, Colafarina S, Aimola P, Ragnelli AM, Miranda M, Pacioni G (2013) Transcriptional, biochemical and histochemical investigation on laccase expression during Tuber melanosporum Vittad. development. Phytochemistry 87:23–29

    Article  PubMed  CAS  Google Scholar 

  • Zivanovic S, Buescher RW, Kim KS (2000) Textural changes in mushrooms (Agaricus bisporus) associated with tissue ultrastructure and composition. J Food Sci 65:1404–1408

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to Francis Martin (INRA-Nancy) and his research group for the access to the genome sequences, in the frame of the common Tuber magnatum sequencing project; to Fabiano Sillo and Stefano Ghignone for the support during ESTs analysis, and to Alfredo Vizzini for the morphological evaluation of fruiting bodies ripeness. The research was funded by Regione Piemonte. EZ’s fellowship was funded by Regione Piemonte and Turin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Balestrini.

Additional information

Communicated by S. Hohmann.

E. Zampieri, F. Guzzo equally contributed to the manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zampieri, E., Guzzo, F., Commisso, M. et al. Gene expression and metabolite changes during Tuber magnatum fruiting body storage. Curr Genet 60, 285–294 (2014). https://doi.org/10.1007/s00294-014-0434-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-014-0434-1

Keywords

Navigation