Skip to main content
Log in

Amidase activity is essential for medial localization of AmiC in Caulobacter crescentus

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Bacterial cell division is a complex process brought about by the coordinated action of multiple proteins. Separation of daughter cells during the final stages of division involves cleavage of new cell wall laid down at the division septum. In E. coli, this process is governed by the action of N-acetylmuramoyl-L-alanine amidases AmiA/B/C, which are regulated by their LytM activators EnvC and NlpD. While much is known about the regulation of septum cleavage in E. coli, the mechanism of daughter cell separation is not clear in Caulobacter crescentus, a dimorphic crescent-shaped bacterium. In this work, we characterized the role of AmiC, the only annotated amidase in C. crescentus. AmiC from C. crescentus is functional in E. coli and restores cell separation defects seen in E. coli amidase mutants, suggesting that AmiC has septum splitting activity. The medial localization of AmiC was independent of DipM, an LytM domain-containing endopeptidase. Our results indicate that enzymatic activity is essential for medial recruitment of AmiC. Overexpression of AmiC causes cell separation defects and formation of chains. Finally, overexpression of AmiC in cells inhibited for cell division leads to lysis. Collectively, our findings reveal that regulation of daughter cell separation in C. crescentus differs from that of E. coli and can serve as a model system to study bacterial cytokinesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aaron M, Charbon G, Lam H, Schwarz H, Vollmer W, Jacobs-Wagner C (2007) The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Mol Microbiol 64:938–952

    Article  CAS  PubMed  Google Scholar 

  • Aarsman ME, Piette A, Fraipont C, Vinkenvleugel TM, Nguyen-Disteche M, den Blaauwen T (2005) Maturation of the Escherichia coli divisome occurs in two steps. Mol Microbiol 55:1631–1645

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt TG, de Boer PA (2003) The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol Microbiol 48:1171–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christianson DW, Mangani S, Shoham G, Lipscomb WN (1989) Binding of D-phenylalanine and D-tyrosine to carboxypeptidase A. J Biol Chem 264:12849–12853

    CAS  PubMed  Google Scholar 

  • Chung HS, Yao Z, Goehring NW, Kishony R, Beckwith J, Kahne D (2009) Rapid beta-lactam-induced lysis requires successful assembly of the cell division machinery. Proc Natl Acad Sci USA 106:21872–21877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa T, Priyadarshini R, Jacobs-Wagner C (2008) Localization of PBP3 in Caulobacter crescentus is highly dynamic and largely relies on its functional transpeptidase domain. Mol Microbiol 70:634–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egan AJ, Cleverley RM, Peters K, Lewis RJ, Vollmer W (2017) Regulation of bacterial cell wall growth. FEBS J 284:851–867

    Article  CAS  PubMed  Google Scholar 

  • Ely B (1991) Genetics of Caulobacter crescentus. Method Enzymol 204:372–384

    Article  CAS  Google Scholar 

  • Evinger M, Agabian N (1977) Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J Bacteriol 132:294–301

  • Frandi A, Jacquier N, Theraulaz L, Greub G, Viollier PH (2014) FtsZ-independent septal recruitment and function of cell wall remodelling enzymes in chlamydial pathogens. Nat Commun 5:4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia DL, Dillard JP (2006) AmiC functions as an N-acetylmuramyl-l-alanine amidase necessary for cell separation and can promote autolysis in Neisseria gonorrhoeae. J Bacteriol 188:7211–7221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goley ED, Comolli LR, Fero KE, Downing KH, Shapiro L (2010) DipM links peptidoglycan remodelling to outer membrane organization in Caulobacter. Mol Microbiol 77:56–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidrich C, Templin MF, Ursinus A et al (2001) Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol Microbiol 41:167–178

    Article  CAS  PubMed  Google Scholar 

  • Heidrich C, Ursinus A, Berger J, Schwarz H, Holtje JV (2002) Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitvity to large toxic molecules in Escherchia coli. J Bacteriol 184:6093–6099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgenson MA, Chen Y, Yahashiri A, Popham DL, Weiss DS (2014) The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa. Mol Microbiol 93:113–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde–glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138A

    Google Scholar 

  • Klockner A, Otten C, Derouaux A et al (2014) AmiA is a penicillin target enzyme with dual activity in the intracellular pathogen Chlamydia pneumoniae. Nat Commun 5:4201

    Article  PubMed  PubMed Central  Google Scholar 

  • Korndorfer IP, Danzer J, Schmelcher M, Zimmer M, Skerra A, Loessner MJ (2006) The crystal structure of the bacteriophage PSA endolysin reveals a unique fold responsible for specific recognition of Listeria cell walls. J Mol Biol 364:678–689

    Article  PubMed  Google Scholar 

  • Meier EL, Razavi S, Inoue T, Goley ED (2016) A novel membrane anchor for FtsZ is linked to cell wall hydrolysis in Caulobacter crescentus. Mol Microbiol 101:265–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier EL, Daitch AK, Yao Q, Bhargava A, Jensen GJ, Goley ED (2017) FtsEX-mediated regulation of the final stages of cell division reveals morphogenetic plasticity in Caulobacter crescentus. PLoS Genet 13:e1006999

    Article  PubMed  PubMed Central  Google Scholar 

  • Moll A, Thanbichler M (2009) FtsN-like proteins are conserved components of the cell division machinery in proteobacteria. Mol Microbiol 72:1037–1053

    Article  PubMed  Google Scholar 

  • Moll A, Schlimpert S, Briegel A, Jensen GJ, Thanbichler M (2010) DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus. Mol Microbiol 77:90–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Moll A, Dorr T, Alvarez L, Chao MC, Davis BM, Cava F, Waldor MK (2014) Cell separation in Vibrio cholerae is mediated by a single amidase whose action is modulated by two nonredundant activators. J Bacteriol 196:3937–3948

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters NT, Dinh T, Bernhardt TG (2011) A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidases and their activators. J Bacteriol 193:4973–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poggio S, Takacs CN, Vollmer W, Jacobs-Wagner C (2010) A protein critical for cell constriction in the Gram-negative bacterium Caulobacter crescentus localizes at the division site through its peptidoglycan-binding LysM domains. Mol Microbiol 77:74–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poindexter JS (1964) Biological properties and classification of the caulobacter group. Bacteriol Rev 28:231–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Priyadarshini R, Popham DL, Young KD (2006) Daughter cell separation by penicillin-binding proteins and peptidoglycan amidases in Escherichia coli. J Bacteriol 188:5345–5355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocaboy M, Herman R, Sauvage E et al (2013) The crystal structure of the cell division amidase AmiC reveals the fold of the AMIN domain, a new peptidoglycan binding domain. Mol Microbiol 90:267–277

    CAS  PubMed  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nature 1:784–791

  • Sliusarenko O, Heinritz J, Emonet T, Jacobs-Wagner C (2011) High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol Microbiol 80:612–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanbichler M, Iniesta AA, Shapiro L (2007) A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res 35:e137

    Article  PubMed  PubMed Central  Google Scholar 

  • Uehara T, Dinh T, Bernhardt TG (2009) LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J Bacteriol 191:5094–5107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara T, Parzych KR, Dinh T, Bernhardt TG (2010) Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J 29:1412–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollmer W, Joris B, Charlier P, Foster S (2008) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32:259–286

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jones BD, Brun YV (2001) A set of ftsZ mutants blocked at different stages of cell division in Caulobacter. Mol Microbiol 40:347–360

  • Yang DC, Peters NT, Parzych KR, Uehara T, Markovski M, Bernhardt TG (2011) An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proc Natl Acad Sci USA 108:E1052–E1060

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Christine Jacobs-Wagner and Kevin Young for providing strains and for the critical review of the manuscript. We would also like to thank Ashish Kushwaha for helping with demograph construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Priyadarshini.

Ethics declarations

Funding

R.P. Lab is supported by startup funds provided by Shiv Nadar University and Young Scientist Grant (SERB, India). Part of the work was supported by the National Institute of Health (R01 GM65835 to Christine Jacobs-Wagner). A.D. was supported by a doctoral fellowship from Shiv Nadar University.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, A., Priyadarshini, R. Amidase activity is essential for medial localization of AmiC in Caulobacter crescentus . Curr Genet 64, 661–675 (2018). https://doi.org/10.1007/s00294-017-0781-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0781-9

Keywords

Navigation