Skip to main content
Log in

R-loops: targets for nuclease cleavage and repeat instability

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

R-loops form when transcribed RNA remains bound to its DNA template to form a stable RNA:DNA hybrid. Stable R-loops form when the RNA is purine-rich, and are further stabilized by DNA secondary structures on the non-template strand. Interestingly, many expandable and disease-causing repeat sequences form stable R-loops, and R-loops can contribute to repeat instability. Repeat expansions are responsible for multiple neurodegenerative diseases, including Huntington’s disease, myotonic dystrophy, and several types of ataxias. Recently, it was found that R-loops at an expanded CAG/CTG repeat tract cause DNA breaks as well as repeat instability (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392–E8401, 2017). Two factors were identified as causing R-loop-dependent breaks at CAG/CTG tracts: deamination of cytosines and the MutLγ (Mlh1–Mlh3) endonuclease, defining two new mechanisms for how R-loops can generate DNA breaks (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392–E8401, 2017). Following R-loop-dependent nicking, base excision repair resulted in repeat instability. These results have implications for human repeat expansion diseases and provide a paradigm for how RNA:DNA hybrids can cause genome instability at structure-forming DNA sequences. This perspective summarizes mechanisms of R-loop-induced fragility at G-rich repeats and new links between DNA breaks and repeat instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Belotserkovskii BP, Liu R, Tornaletti S, Krasilnikova MM, Mirkin SM, Hanawalt PC (2010) Mechanisms and implications of transcription blockage by guanine-rich DNA sequences. Proc Natl Acad Sci USA 107:12816–12821

    Article  PubMed  Google Scholar 

  • Belotserkovskii BP, Mirkin SM, Hanawalt PC (2013) DNA sequences that interfere with transcription: implications for genome function and stability. Chem Rev 113:8620–8637

    Article  PubMed  CAS  Google Scholar 

  • Brambati A, Colosio A, Zardoni L, Galanti L, Liberi G (2015) Replication and transcription on a collision course: eukaryotic regulation mechanisms and implications for DNA stability. Front Genet 6:166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bregenhorn S, Kallenberger L, Artola-Boran M, Pena-Diaz J, Jiricny J (2016) Non-canonical uracil processing in DNA gives rise to double-strand breaks and deletions: relevance to class switch recombination. Nucleic Acids Res 44:2691–2705

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan YA, Aristizabal MJ, Lu PY, Luo Z, Hamza A, Kobor MS, Stirling PC, Hieter P (2014) Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip. PLoS Genet 10:e1004288

    Article  PubMed  PubMed Central  Google Scholar 

  • Chedin F (2016) Nascent connections: R-loops and chromatin patterning. Trends Genet: TIG 32:828–838

    Article  PubMed  CAS  Google Scholar 

  • Ditch S, Sammarco MC, Banerjee A, Grabczyk E (2009) Progressive GAA.TTC repeat expansion in human cell lines. PLoS Genet 5:e1000704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N (2004) Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev 18:1618–1629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Entezam A, Lokanga AR, Le W, Hoffman G, Usdin K (2010) Potassium bromate, a potent DNA oxidizing agent, exacerbates germline repeat expansion in a fragile X premutation mouse model. Hum Mutat 31:611–616

    PubMed  PubMed Central  CAS  Google Scholar 

  • Flores-Rozas H, Kolodner RD (1998) The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc Natl Acad Sci USA 95:12404–12409

    Article  PubMed  CAS  Google Scholar 

  • Grabczyk E, Mancuso M, Sammarco MC (2007) A persistent RNA.DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res 35:5351–5359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groh M, Lufino MM, Wade-Martins R, Gromak N (2014) R-loops associated with triplet repeat expansions promote gene silencing in friedreich ataxia and fragile X syndrome. PLoS Genet 10:e1004318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guikema JE, Linehan EK, Tsuchimoto D, Nakabeppu Y, Strauss PR, Stavnezer J, Schrader CE (2007) APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. J Exp Med 204:3017–3026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keogh N, Chan KY, Li GM, Lahue RS (2017) MutSbeta abundance and Msh3 ATP hydrolysis activity are important drivers of CTG*CAG repeat expansions. Nucleic Acids Res 45:10068–10078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keskin H, Shen Y, Huang F, Patel M, Yang T, Ashley K, Mazin AV, Storici F (2014) Transcript-RNA-templated DNA recombination and repair. Nature 515:436–439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim N, Jinks-Robertson S (2011) Guanine repeat-containing sequences confer transcription-dependent instability in an orientation-specific manner in yeast. DNA Repair 10:953–960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim JC, Harris ST, Dinter T, Shah KA, Mirkin SM (2017) The role of break-induced replication in large-scale expansions of (CAG)n/(CTG)n repeats. Nat Struct Mol Biol 24:55–60

    Article  PubMed  CAS  Google Scholar 

  • Kovtun IV, Liu Y, Bjoras M, Klungland A, Wilson SH, McMurray CT (2007) OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 447:447–452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai Y, Budworth H, Beaver JM, Chan NL, Zhang Z, McMurray CT, Liu Y (2016) Crosstalk between MSH2–MSH3 and polbeta promotes trinucleotide repeat expansion during base excision repair. Nat Commun 7:12465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JM, Chao WV, Vonsattel MJ, Pinto JP, Lucente RM, Abu-Elneel D, Ramos K, Mysore EM, Gillis JS, MacDonald T, Gusella ME, Harold JF, Stone D, Escott-Price TC, Han V, Vedernikov J, Holmans A, Jones P, Kwak L, Mahmoudi S, Orth M, Landwehrmeyer M, Paulsen GB, Dorsey JS, Shoulson ER, Myers IRH (2015) Identification of genetic factors that modify clinical onset of Huntington’s disease. Cell 162:516–526

    Article  CAS  Google Scholar 

  • Lee JM, Chao MJ, Harold D, Abu Elneel K, Gillis T, Holmans P, Jones L, Orth M, Myers RH, Kwak S et al (2017) A modifier of Huntington’s disease onset at the MLH1 locus. Hum Mol Genet 26:3859–3867

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Wilson JH (2007) Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair. Mol Cell Biol 27:6209–6217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin Y, Wilson JH (2012) Nucleotide excision repair, mismatch repair, and R-loops modulate convergent transcription-induced cell death and repeat instability. PloS one 7:e46807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin Y, Dion V, Wilson JH (2006) Transcription promotes contraction of CAG repeat tracts in human cells. Nat Struct Mol Biol 13:179–180

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Dent SY, Wilson JH, Wells RD, Napierala M (2010) R loops stimulate genetic instability of CTG.CAG repeats. Proc Natl Acad Sci USA 107:692–697

    Article  PubMed  Google Scholar 

  • Liu Y, Wilson SH (2012) DNA base excision repair: a mechanism of trinucleotide repeat expansion. Trends Biochem Sci 37:162–172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lokanga RA, Senejani AG, Sweasy JB, Usdin K (2015) Heterozygosity for a hypomorphic Polbeta mutation reduces the expansion frequency in a mouse model of the Fragile X-related disorders. PLoS Genet 11:e1005181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loomis EW, Sanz LA, Chedin F, Hagerman PJ (2014) Transcription-associated R-loop formation across the human FMR1 CGG-repeat region. PLoS Genet 10:e1004294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maizels N, Gray LT (2013) The G4 genome. PLoS Genet 9:e1003468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manhart CM, Ni X, White MA, Ortega J, Surtees JA, Alani E (2017) The mismatch repair and meiotic recombination endonuclease Mlh1–Mlh3 is activated by polymer formation and can cleave DNA substrates in trans. PLoS Biol 15:e2001164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McGinty RJ, Puleo F, Aksenova AY, Hisey JA, Shishkin AA, Pearson EL, Wang ET, Housman DE, Moore C, Mirkin SM (2017a) A defective mRNA cleavage and polyadenylation complex facilitates expansions of transcribed (GAA)n repeats associated with Friedreich’s ataxia. Cell Rep 20:2490–2500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McGinty RJ, Rubinstein RG, Neil AJ, Dominska M, Kiktev D, Petes TD, Mirkin SM (2017b) Nanopore sequencing of complex genomic rearrangements in yeast reveals mechanisms of repeat-mediated double-strand break repair. Genome Res 27(12):2072–2082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McMurray CT (2010) Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet 11:786–799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mollersen L, Rowe AD, Illuzzi JL, Hildrestrand GA, Gerhold KJ, Tveteras L, Bjolgerud A, Wilson DM, 3rd, Bjoras M, Klungland A (2012) Neil1 is a genetic modifier of somatic and germline CAG trinucleotide repeat instability in R6/1 mice. Hum Mol Genet 21, 4939–4947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morales F, Vasquez M, Santamaria C, Cuenca P, Corrales E, Monckton DG (2016) A polymorphism in the MSH3 mismatch repair gene is associated with the levels of somatic instability of the expanded CTG repeat in the blood DNA of myotonic dystrophy type 1 patients. DNA Repair 40:57–66

    Article  PubMed  CAS  Google Scholar 

  • Moss DJH et al (2017) Identification of genetic variants associated with Huntington’s disease progression: a genome-wide association study. Lancet Neurol 16:701–711

    Article  CAS  Google Scholar 

  • Oestergaard VH, Lisby M (2017) Transcription-replication conflicts at chromosomal fragile sites-consequences in M phase and beyond. Chromosoma 126:213–222

    Article  PubMed  CAS  Google Scholar 

  • Pinto RM, Dragileva E, Kirby A, Lloret A, Lopez E, St Claire J, Panigrahi GB, Hou C, Holloway K, Gillis T et al (2013) Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington’s disease mice: genome-wide and candidate approaches. PLoS Genet 9:e1003930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polleys EJ, House NCM, Freudenreich CH (2017) Role of recombination and replication fork restart in repeat instability. DNA Repair 56:156–165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polyzos AA, McMurray CT (2017) Close encounters: Moving along bumps, breaks, and bubbles on expanded trinucleotide tracts. DNA Repair 56:144–155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polyzos A, Holt A, Brown C, Cosme C, Wipf P, Gomez-Marin A, Castro MR, Ayala-Pena S, McMurray CT (2016) Mitochondrial targeting of XJB-5–131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes. Hum Mol Genet 25:1792–1802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiao Q, Wang L, Meng FL, Hwang JK, Alt FW, Wu H (2017) AID recognizes structured DNA for class switch recombination. Mol Cell 67:361–373 e364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranjha L, Anand R, Cejka P (2014) The Saccharomyces cerevisiae Mlh1–Mlh3 heterodimer is an endonuclease that preferentially binds to Holliday junctions. J Biol Chem 289:5674–5686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ratmeyer L, Vinayak R, Zhong YY, Zon G, Wilson WD (1994) Sequence specific thermodynamic and structural properties for DNA.RNA duplexes. Biochemistry 33:5298–5304

    Article  PubMed  CAS  Google Scholar 

  • Reddy K, Tam M, Bowater RP, Barber M, Tomlinson M, Edamura N, Wang K, Y.H., and Pearson CE (2011) Determinants of R-loop formation at convergent bidirectionally transcribed trinucleotide repeats. Nucleic Acids Res 39:1749–1762

    Article  PubMed  CAS  Google Scholar 

  • Reddy K, Schmidt MH, Geist JM, Thakkar NP, Panigrahi GB, Wang YH, Pearson CE (2014) Processing of double-R-loops in (CAG).(CTG) and C9orf72 (GGGGCC).(GGCCCC) repeats causes instability. Nucleic Acids Res 42:10473–10487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rindler PM, Bidichandani SI (2011) Role of transcript and interplay between transcription and replication in triplet-repeat instability in mammalian cells. Nucleic Acids Res 39:526–535

    Article  PubMed  CAS  Google Scholar 

  • Roberts RW, Crothers DM (1992) Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258:1463–1466

    Article  PubMed  CAS  Google Scholar 

  • Rogacheva MV, Manhart CM, Chen C, Guarne A, Surtees J, Alani E (2014) Mlh1–Mlh3, a meiotic crossover and DNA mismatch repair factor, is a Msh2–Msh3-stimulated endonuclease. J Biol Chem 289:5664–5673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romanova NV, Crouse GF (2013) Different roles of eukaryotic MutS and MutL complexes in repair of small insertion and deletion loops in yeast. PLoS Genet 9:e1003920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salvi JS, Mekhail K (2015) R-loops highlight the nucleus in ALS. Nucleus 6:23–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santos-Pereira JM, Aguilera A (2015) R loops: new modulators of genome dynamics and function. Nat Rev Genet 16:583–597

    Article  PubMed  CAS  Google Scholar 

  • Sanz LA, Hartono SR, Lim YW, Steyaert S, Rajpurkar A, Ginno PA, Xu X, Chedin F (2016) Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol Cell 63:167–178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt MH, Pearson CE (2016) Disease-associated repeat instability and mismatch repair. DNA Repair 38:117–126

    Article  PubMed  CAS  Google Scholar 

  • Schrader CE, Guikema JE, Wu X, Stavnezer J (2009) The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch. Philos Trans R Soc Lond B Biol Sci 364:645–652

    Article  PubMed  CAS  Google Scholar 

  • Skourti-Stathaki K, Proudfoot NJ (2014) A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 28:1384–1396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sollier J, Stork CT, Garcia-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA (2014) Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell 56:777–785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stavnezer J, Guikema JE, Schrader CE (2008) Mechanism and regulation of class switch recombination. Annu Rev Immunol 26:261–292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su XA, Freudenreich CH (2017) Cytosine deamination and base excision repair cause R-loop-induced CAG repeat fragility and instability in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 114:E8392–E8401

    Article  PubMed  CAS  Google Scholar 

  • Usdin K, House NC, Freudenreich CH (2015) Repeat instability during DNA repair: Insights from model systems. Crit Rev Biochem Mol Biol 50(2):142–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wahba L, Gore SK, Koshland D (2013) The homologous recombination machinery modulates the formation of RNA-DNA hybrids and associated chromosome instability. eLife 2:e00505

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahba L, Costantino L, Tan FJ, Zimmer A, Koshland D (2016) S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev 30:1327–1338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Xiaofeng Allen Su for help with the figure. The author’s research is supported by the National Science Foundation (MCB1330743) and the National Institute of Health (GM122880 and GM105473).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine H. Freudenreich.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freudenreich, C.H. R-loops: targets for nuclease cleavage and repeat instability. Curr Genet 64, 789–794 (2018). https://doi.org/10.1007/s00294-018-0806-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-018-0806-z

Keywords

Navigation