Skip to main content

Advertisement

Log in

Cardiac involvement in primary systemic vasculitis and potential drug therapies to reduce cardiovascular risk

  • Observational Research
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Cardiac involvement is common in primary systemic vasculitides and may be due to direct effect of the disease on the heart or due to therapy. We shall review involvement of the heart in the various forms of primary systemic vasculitis. Among anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV), eosinophilic granulomatosis with polyangiitis most commonly involves the heart. Involvement of the heart confers poorer prognosis in AAV, which is also complicated by increased risk of cardiovascular events. Kawasaki’s disease (KD) is the most common form of medium-vessel vasculitis to affect the heart, with coronary artery aneurysms being the most common manifestation. These predispose patients with KD to develop premature ischemic heart disease. Takayasu’s arteritis is the most common large-vessel vasculitis to involve the heart and can result in aortic incompetence, myocarditis, or coronary heart disease. Involvement of the heart in Behcet’s disease is usually in the form of intracardiac mass lesions, thrombosis, or endomyocardial fibrosis. Drugs used in the treatment of systemic vasculitis influence the risk of developing cardiovascular events. Corticosteroid therapy has been shown to increase the risk of myocardial infarction, whereas methotrexate, azathioprine, mycophenolate mofetil, rituximab, and anti-tumor necrosis alpha agents favorably modulate the risk of cardiovascular events, predominantly by dampening systemic inflammation. Awareness of cardiac involvement in vasculitis and accelerated cardiovascular risk in these patients should help clinicians to maximize the modulation of modifiable risk factors for heart disease in these individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AAV:

ANCA-associated small-vessel vasculitis

ABA:

Abatacept

AMP:

Adenosine monophosphate

AMPK:

Adenosine monophosphate-activated protein kinase

ANCA:

Anti-neutrophil cytoplasmic antibodies

ANCA+:

Anti-neutrophil cytoplasmic antibodies positive

ANCA−:

Anti-neutrophil cytoplasmic antibodies negative

AZA:

Azathioprine

BD:

Behcet’s disease

CANTOS:

Canakinumab Anti-inflammatory Thrombosis Outcomes Study

CMR:

Cardiac magnetic resonance

CRP:

C-reactive protein

CREB:

Cyclic AMP-responsive element-binding protein

CS:

Cogan syndrome

EGPA:

Eosinophilic granulomatosis with polyangiitis

EP:

Electrophysiologic

GCA:

Giant cell arteritis

GPA:

Granulomatosis with polyangiitis

HDL:

High-density lipoproteins

IL:

Interleukin

IL1RA:

Interleukin 1 receptor antagonist

IVIG:

Intravenous immunoglobulin

KD:

Kawasaki’s disease

LDL:

Low-density lipoproteins

MCP1:

Monocyte chemoattractant protein 1

MPA:

Microscopic polyangiitis

MTX:

Methotrexate

MYCOP:

Mycophenolate

NCEP/ATP III:

National Cholesterol Education Program/Adult Treatment Panel III

PAN:

Polyarteritis nodosa

PET:

Positron emission tomography

QTc:

Corrected QT interval

RTX:

Rituximab

STE:

Speckle-tracing two-dimensional echocardiography

TA:

Takayasu’s arteritis

TG:

Triglycerides

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TOC:

Tocilizumab

References

  1. Gasparyan AY, Stavropoulos-Kalinoglou A, Mikhailidis DP et al (2010) The rationale for comparative studies of accelerated atherosclerosis in rheumatic diseases. Curr Vasc Pharmacol 8:437–449

    Article  CAS  PubMed  Google Scholar 

  2. Jennette JC, Falk RJ, Bacon PA et al (2013) 2012 revised international chapel hill consensus conference nomenclature of vasculitides. Arthritis Rheum 65:1–11. doi:10.1002/art.37715

    Article  CAS  PubMed  Google Scholar 

  3. Gasparyan AY, Ayvazyan L, Blackmore H, Kitas GD (2011) Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. Rheumatol Int 31:1409–1417. doi:10.1007/s00296-011-1999-3

    Article  PubMed  Google Scholar 

  4. Hazebroek MR, Kemna MJ, Schalla S et al (2015) Prevalence and prognostic relevance of cardiac involvement in ANCA-associated vasculitis: Eosinophilic granulomatosis with polyangiitis and granulomatosis with polyangiitis. Int J Cardiol 199:170–179. doi:10.1016/j.ijcard.2015.06.087

    Article  CAS  PubMed  Google Scholar 

  5. Guillevin L, Pagnoux C, Seror R et al (2011) The Five-Factor Score revisited: assessment of prognoses of systemic necrotizing vasculitides based on the French Vasculitis Study Group (FVSG) cohort. Medicine (Baltimore) 90:19–27. doi:10.1097/MD.0b013e318205a4c6

    Article  Google Scholar 

  6. Wallace ZS, Lu N, Unizony S, Stone JH, Choi HK (2015) Improved survival in granulomatosis with polyangiitis: a general population-based study. Semin Arthritis Rheum. doi:10.1016/j.semarthrit.2015.07.009

    PubMed  Google Scholar 

  7. McGeoch L, Carette S, Cuthbertson D et al (2015) Cardiac involvement in granulomatosis with polyangiitis. J Rheumatol 42:1209–1212. doi:10.3899/jrheum.141513

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pierrot-Deseilligny Despujol C, Pouchot J, Pagnoux C, Coste J, Guillevin L (2010) Predictors at diagnosis of a first Wegener’s granulomatosis relapse after obtaining complete remission. Rheumatology (Oxford) 49:2181–2190. doi:10.1093/rheumatology/keq244

    Article  Google Scholar 

  9. Lacoste C, Mansencal N, M Ben M’rad et al (2011) Valvular involvement in ANCA-associated systemic vasculitis: a case report and literature review. BMC Musculoskelet Disord 12:50. doi:10.1186/1471-2474-12-50

    Article  PubMed  PubMed Central  Google Scholar 

  10. Singh R, Rosen S (2012) Tumor of the heart in a young woman; a rare manifestation of Wegener granulomatosis. Hum Pathol 43:289–292. doi:10.1016/j.humpath.2011.04.020

    Article  PubMed  Google Scholar 

  11. Misra DP, Chowdhury AC, Edavalath S et al (2016) Endocarditis: the great mimic of rheumatic diseases. Trop Doct. doi:10.1177/0049475515624031

    Google Scholar 

  12. Miszalski-Jamka T, Szczeklik W, Nycz K et al (2012) Two-dimensional speckle-tracking echocardiography reveals systolic abnormalities in granulomatosis with polyangiitis (Wegener’s). Echocardiography 29:803–809. doi:10.1111/j.1540-8175.2012.01699.x

    Article  PubMed  Google Scholar 

  13. Miszalski-Jamka T, Szczeklik W, Sokolowska B et al (2013) Standard and feature tracking magnetic resonance evidence of myocardial involvement in Churg–Strauss syndrome and granulomatosis with polyangiitis (Wegener’s) in patients with normal electrocardiograms and transthoracic echocardiography. Int J Cardiovasc Imaging 29:843–853. doi:10.1007/s10554-012-0158-6

    Article  PubMed  Google Scholar 

  14. Miszalski-Jamka T, Szczeklik W, Sokolowska B et al (2011) Cardiac involvement in Wegener’s granulomatosis resistant to induction therapy. Eur Radiol 21:2297–2304. doi:10.1007/s00330-011-2203-6

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guillevin L, Durand-Gasselin B, Cevallos R et al (1999) Microscopic polyangiitis: clinical and laboratory findings in eighty-five patients. Arthritis Rheum 42:421–430

    Article  CAS  PubMed  Google Scholar 

  16. Shuai ZW, Lv YF, Zhang MM, Hu ZY (2015) Clinical analysis of patients with myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis. Genet Mol Res 14:5296–5303. doi:10.4238/2015.May.18.22

    Article  CAS  PubMed  Google Scholar 

  17. Mavrogeni S, Manoussakis MN, Karagiorga TC et al (2009) Detection of coronary artery lesions and myocardial necrosis by magnetic resonance in systemic necrotizing vasculitides. Arthritis Care Res (Hoboken) 61:1121–1129. doi:10.1002/art.24695

    Article  CAS  Google Scholar 

  18. Gendelman S, Zeft A, Spalding SJ (2013) Childhood-onset eosinophilic granulomatosis with polyangiitis (formerly Churg–Strauss syndrome): a contemporary single-center cohort. J Rheumatol 40:929–935. doi:10.3899/jrheum.120808

    Article  CAS  PubMed  Google Scholar 

  19. Moosig F, Bremer JP, Hellmich B et al (2013) A vasculitis centre based management strategy leads to improved outcome in eosinophilic granulomatosis and polyangiitis (Churg–Strauss, EGPA): monocentric experiences in 150 patients. Ann Rheum Dis 72:1011–1017. doi:10.1136/annrheumdis-2012-201531

    Article  PubMed  Google Scholar 

  20. Dennert RM, Van Paassen P, Schalla S et al (2010) Cardiac involvement in Churg–Strauss syndrome. Arthritis Rheum 62:627–634. doi:10.1002/art.27263

    PubMed  Google Scholar 

  21. Vinit J, Bielefeld P, Muller G et al (2010) Heart involvement in Churg–Strauss syndrome: retrospective study in French Burgundy population in past 10 years. Eur J Intern Med 21:341–346. doi:10.1016/j.ejim.2010.05.004

    Article  CAS  PubMed  Google Scholar 

  22. McKinney EF, Willcocks LC, Broecker V, Smith KGC (2014) The immunopathology of ANCA-associated vasculitis. Semin Immunopathol 36:461–478. doi:10.1007/s00281-014-0436-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gioffredi A, Maritati F, Oliva E, Buzio C (2014) Eosinophilic granulomatosis with polyangiitis: an overview. Front Immunol 5:549. doi:10.3389/fimmu.2014.00549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mavrogeni S, Karabela G, Gialafos E et al (2013) Cardiac involvement in ANCA (+) and ANCA (−) Churg–Strauss syndrome evaluated by cardiovascular magnetic resonance. Inflamm Allergy Drug Targets 12:322–327

    Article  CAS  PubMed  Google Scholar 

  25. Marmursztejn J, Guillevin L, Trebossen R et al (2013) Churg–Strauss syndrome cardiac involvement evaluated by cardiac magnetic resonance imaging and positron-emission tomography: a prospective study on 20 patients. Rheumatology (Oxford) 52:642–650. doi:10.1093/rheumatology/kes155

    Article  CAS  Google Scholar 

  26. Szczeklik W, Miszalski-Jamka T, Mastalerz L et al (2011) Multimodality assessment of cardiac involvement in Churg–Strauss syndrome patients in clinical remission. Circ J 75:649–655

    Article  PubMed  Google Scholar 

  27. Marmursztejn J, Cohen P, Duboc D et al (2010) Cardiac magnetic resonance imaging in Churg–Strauss-syndrome. Impact of immunosuppressants on outcome assessed in a prospective study on 8 patients. Clin Exp Rheumatol 28:8–13

    PubMed  Google Scholar 

  28. Miszalski-Jamka T, Szczeklik W, Nycz K et al (2012) The mechanics of left ventricular dysfunction in patients with Churg–Strauss syndrome. Echocardiography 29:568–578. doi:10.1111/j.1540-8175.2011.01654.x

    Article  PubMed  Google Scholar 

  29. Szczeklik W, Sokolowska BM, Mastalerz L et al (2011) QT dispersion in patients with Churg–Strauss syndrome. Kardiol Pol 69:1143–1149

    PubMed  Google Scholar 

  30. Groh M, Masciocco G, Kirchner E et al (2014) Heart transplantation in patients with eosinophilic granulomatosis with polyangiitis (Churg–Strauss syndrome). J Heart Lung Transplant 33:842–850. doi:10.1016/j.healun.2014.02.023

    Article  PubMed  Google Scholar 

  31. Morgan MD, Turnbull J, Selamet U et al (2009) Increased incidence of cardiovascular events in patients with antineutrophil cytoplasmic antibody-associated vasculitides: a matched-pair cohort study. Arthritis Rheum 60:3493–3500. doi:10.1002/art.24957

    Article  PubMed  Google Scholar 

  32. Chironi G, Pagnoux C, Simon A et al (2007) Increased prevalence of subclinical atherosclerosis in patients with small-vessel vasculitis. Heart 93:96–99. doi:10.1136/hrt.2006.088443

    Article  CAS  PubMed  Google Scholar 

  33. Terrier B, Chironi G, Pagnoux C et al (2014) Factors associated with major cardiovascular events in patients with systemic necrotizing vasculitides: results of a longterm followup study. J Rheumatol 41:723–729. doi:10.3899/jrheum.130882

    Article  PubMed  Google Scholar 

  34. Bae YD, Choi HJ, Lee JC et al (2006) Clinical features of polyarteritis nodosa in Korea. J Korean Med Sci 21:591–595

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schrader ML, Hochman JS, Bulkley BH (1985) The heart in polyarteritis nodosa: a clinicopathologic study. Am Heart J 109:1353–1359

    Article  CAS  PubMed  Google Scholar 

  36. Gunal N, Kara N, Cakar N et al (1997) Cardiac involvement in childhood polyarteritis nodosa. Int J Cardiol 60:257–262

    Article  CAS  PubMed  Google Scholar 

  37. Zoller B, Li X, Sundquist J, Sundquist K (2012) Risk of subsequent coronary heart disease in patients hospitalized for immune-mediated diseases: a nationwide follow-up study from Sweden. PLoS One 7:e33442. doi:10.1371/journal.pone.0033442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bourgarit A, Le Toumelin P, Pagnoux C et al (2005) Deaths occurring during the first year after treatment onset for polyarteritis nodosa, microscopic polyangiitis, and Churg–Strauss syndrome: a retrospective analysis of causes and factors predictive of mortality based on 595 patients. Medicine (Baltimore) 84:323–330

    Article  Google Scholar 

  39. Fortin PR, Larson MG, Watters AK et al (1995) Prognostic factors in systemic necrotizing vasculitis of the polyarteritis nodosa group—a review of 45 cases. J Rheumatol 22:78–84

    CAS  PubMed  Google Scholar 

  40. Guillevin L, Lhote F, Gayraud M et al (1996) Prognostic factors in polyarteritis nodosa and Churg–Strauss syndrome. A prospective study in 342 patients. Medicine (Baltimore) 75:17–28

    Article  CAS  Google Scholar 

  41. Singh S, Vignesh P, Burgner D (2015) The epidemiology of Kawasaki disease: a global update. Arch Dis Child 100:1084–1088. doi:10.1136/archdischild-2014-307536

    Article  PubMed  Google Scholar 

  42. Han BK, Lesser A, Rosenthal K et al (2014) Coronary computed tomographic angiographic findings in patients with Kawasaki disease. Am J Cardiol 114:1676–1681. doi:10.1016/j.amjcard.2014.09.004

    Article  PubMed  Google Scholar 

  43. Tacke CE, Kuipers IM, Groenink M, Spijkerboer AM, Kuijpers TW (2011) Cardiac magnetic resonance imaging for noninvasive assessment of cardiovascular disease during the follow-up of patients with Kawasaki disease. Circ Cardiovasc Imaging 4:712–720. doi:10.1161/circimaging.111.965996

    Article  PubMed  Google Scholar 

  44. Chaudhuri K, Singh Ahluwalia T, Singh S, Binepal G, Khullar M (2011) Polymorphism in the promoter of the CCL5 gene (CCL5G-403A) in a cohort of North Indian children with Kawasaki disease. A preliminary study. Clin Exp Rheumatol 29:S126–S130

    PubMed  Google Scholar 

  45. Caballero-Mora FJ, Alonso-Martin B, Tamariz-Martel-Moreno A, Cano-Fernandez J, Sanchez-Bayle M (2011) Kawasaki disease in 76 patients. Risk factors for coronary artery aneurysms. An Pediatr (Barc) 74:232–238. doi:10.1016/j.anpedi.2010.11.024

    Article  CAS  Google Scholar 

  46. Callinan LS, Tabnak F, Holman RC et al (2012) Kawasaki syndrome and factors associated with coronary artery abnormalities in California. Pediatr Infect Dis J 31:894–898. doi:10.1097/INF.0b013e31825c4d7c

    Article  PubMed  Google Scholar 

  47. Kim JJ, Hong YM, Yun SW et al (2012) Assessment of risk factors for Korean children with Kawasaki disease. Pediatr Cardiol 33:513–520. doi:10.1007/s00246-011-0143-1

    Article  PubMed  Google Scholar 

  48. Falcini F, Rigante D, Masi L et al (2013) Fibroblast growth factor 23 (FGF23) gene polymorphism in children with Kawasaki syndrome (KS) and susceptibility to cardiac abnormalities. Ital J Pediatr 39:69. doi:10.1186/1824-7288-39-69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Giannouli G, Tzoumaka-Bakoula C, Kopsidas I et al (2013) Epidemiology and risk factors for coronary artery abnormalities in children with complete and incomplete Kawasaki disease during a 10-year period. Pediatr Cardiol 34:1476–1481. doi:10.1007/s00246-013-0673-9

    Article  PubMed  Google Scholar 

  50. Ruan Y, Ye B, Zhao X (2013) Clinical characteristics of Kawasaki syndrome and the risk factors for coronary artery lesions in China. Pediatr Infect Dis J 32:e397–e402. doi:10.1097/INF.0b013e31829dd45e

    Article  PubMed  Google Scholar 

  51. Maric LS, Knezovic I, Papic N et al (2015) Risk factors for coronary artery abnormalities in children with Kawasaki disease: a 10-year experience. Rheumatol Int 35:1053–1058. doi:10.1007/s00296-014-3186-9

    Article  PubMed  Google Scholar 

  52. Kuwabara M, Yashiro M, Kotani K et al (2015) Cardiac lesions and initial laboratory data in Kawasaki disease: a nationwide survey in Japan. J Epidemiol 25:189–193. doi:10.2188/jea.JE20140128

    Article  PubMed  Google Scholar 

  53. Ye Q, Shao WX, Shang SQ et al (2015) A comprehensive assessment of the value of laboratory indices in diagnosing Kawasaki disease. Arthritis Rheumatol 67:1943–1950. doi:10.1002/art.39112

    Article  CAS  PubMed  Google Scholar 

  54. Lin YJ, Chang JS, Liu X et al (2015) Genetic variants in PLCB4/PLCB1 as susceptibility loci for coronary artery aneurysm formation in Kawasaki disease in Han Chinese in Taiwan. Sci Rep 5:14762. doi:10.1038/srep14762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao LL, Wang YB, Suo L (2011) Meta-analysis of the risk factors for coronary artery lesion secondary to Kawasaki disease in Chinese children. Zhonghua Er Ke Za Zhi 49:459–467

    PubMed  Google Scholar 

  56. Orenstein JM, Shulman ST, Fox LM et al (2012) Three linked vasculopathic processes characterize Kawasaki disease: a light and transmission electron microscopic study. PLoS One 7:e38998. doi:10.1371/journal.pone.0038998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin IC, Kuo HC, Lin YJ et al (2012) Augmented TLR2 expression on monocytes in both human Kawasaki disease and a mouse model of coronary arteritis. PLoS One 7:e38635. doi:10.1371/journal.pone.0038635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin IC, Suen JL, Huang SK et al (2013) Dectin-1/Syk signaling is involved in Lactobacillus casei cell wall extract-induced mouse model of Kawasaki disease. Immunobiology 218:201–212. doi:10.1016/j.imbio.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  59. Nishio H, Kanno S, Onoyama S et al (2011) Nod1 ligands induce site-specific vascular inflammation. Arterioscler Thromb Vasc Biol 31:1093–1099. doi:10.1161/ATVBAHA.110.216325

    Article  CAS  PubMed  Google Scholar 

  60. Nakamura Y, Aso E, Yashiro M et al (2013) Mortality among Japanese with a history of Kawasaki disease: results at the end of 2009. J Epidemiol 23:429–434

    Article  PubMed  Google Scholar 

  61. Niedra E, Chahal N, Manlhiot C, Yeung RS, McCrindle BW (2014) Atorvastatin safety in Kawasaki disease patients with coronary artery aneurysms. Pediatr Cardiol 35:89–92. doi:10.1007/s00246-013-0746-9

    Article  PubMed  Google Scholar 

  62. Mori M, Imagawa T, Hara R et al (2012) Efficacy and limitation of infliximab treatment for children with Kawasaki disease intractable to intravenous immunoglobulin therapy: report of an open-label case series. J Rheumatol 39:864–867. doi:10.3899/jrheum.110877

    Article  CAS  PubMed  Google Scholar 

  63. Tremoulet AH, Jain S, Jaggi P et al (2014) Infliximab for intensification of primary therapy for Kawasaki disease: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet 383:1731–1738. doi:10.1016/s0140-6736(13)62298-9

    Article  CAS  PubMed  Google Scholar 

  64. Millar K, Manlhiot C, Yeung RS, Somji Z, McCrindle BW (2012) Corticosteroid administration for patients with coronary artery aneurysms after Kawasaki disease may be associated with impaired regression. Int J Cardiol 154:9–13. doi:10.1016/j.ijcard.2010.08.070

    Article  PubMed  Google Scholar 

  65. Adachi S, Sakaguchi H, Kuwahara T et al (2010) High regression rate of coronary aneurysms developed in patients with immune Globulin-Resistant Kawasaki disease treated with steroid pulse therapy. Tohoku J Exp Med 220:285–290. doi:10.1620/tjem.220.285

    Article  PubMed  Google Scholar 

  66. Chen S, Dong Y, Yin Y, Krucoff MW (2013) Intravenous immunoglobulin plus corticosteroid to prevent coronary artery abnormalities in Kawasaki disease: a meta-analysis. Heart 99:76–82. doi:10.1136/heartjnl-2012-302126

    Article  CAS  PubMed  Google Scholar 

  67. Harada M, Yokouchi Y, Oharaseki T et al (2012) Histopathological characteristics of myocarditis in acute-phase Kawasaki disease. Histopathology 61:1156–1167. doi:10.1111/j.1365-2559.2012.04332.x

    Article  PubMed  Google Scholar 

  68. Tacke CE, Romeih S, Kuipers IM et al (2013) Evaluation of cardiac function by magnetic resonance imaging during the follow-up of patients with Kawasaki disease. Circ Cardiovasc Imaging 6:67–73. doi:10.1161/circimaging.112.976969

    Article  PubMed  Google Scholar 

  69. McCandless RT, Minich LL, Wilkinson SE et al (2013) Myocardial strain and strain rate in Kawasaki disease. Eur Heart J Cardiovasc Imaging 14:1061–1068. doi:10.1093/ehjci/jet041

    Article  PubMed  Google Scholar 

  70. Ichida F, Fatica NS, O’Loughlin JE et al (1988) Correlation of electrocardiographic and echocardiographic changes in Kawasaki syndrome. Am Heart J 116:812–819

    Article  CAS  PubMed  Google Scholar 

  71. Ghelani SJ, Singh S, Manojkumar R (2011) QT interval dispersion in North Indian children with Kawasaki disease without overt coronary artery abnormalities. Rheumatol Int 31:301–305. doi:10.1007/s00296-009-1252-5

    Article  PubMed  Google Scholar 

  72. Oyamada J, Toyono M, Shimada S, Aoki-Okazaki M, Takahashi T (2012) Altered central aortic elastic properties in Kawasaki disease are related to changes in left ventricular geometry and coronary artery aneurysm formation. J Am Soc Echocardiogr 25:690–696. doi:10.1016/j.echo.2012.03.003

    Article  PubMed  Google Scholar 

  73. AlHuzaimi A, Al Mashham Y, Potts JE, De Souza AM, Sandor GG (2013) Echo-Doppler assessment of arterial stiffness in pediatric patients with Kawasaki disease. J Am Soc Echocardiogr 26:1084–1089. doi:10.1016/j.echo.2013.05.015

    Article  PubMed  Google Scholar 

  74. Shah V, Christov G, Mukasa T et al (2015) Cardiovascular status after Kawasaki disease in the UK. Heart 101:1646–1655. doi:10.1136/heartjnl-2015-307734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ishikawa K, Maetani S (1994) Long-term outcome for 120 Japanese patients with Takayasu’s disease. Clinical and statistical analyses of related prognostic factors. Circulation 90:1855–1860

    Article  CAS  PubMed  Google Scholar 

  76. Endo M, Tomizawa Y, Nishida H et al (2003) Angiographic findings and surgical treatments of coronary artery involvement in Takayasu arteritis. J Thorac Cardiovasc Surg 125:570–577. doi:10.1067/mtc.2003.39

    Article  PubMed  Google Scholar 

  77. Comarmond C, Cluzel P, Toledano D et al (2014) Findings of cardiac magnetic resonance imaging in asymptomatic myocardial ischemic disease in Takayasu arteritis. Am J Cardiol 113:881–887. doi:10.1016/j.amjcard.2013.11.045

    Article  PubMed  Google Scholar 

  78. Lee GY, Jang SY, Ko SM et al (2012) Cardiovascular manifestations of Takayasu arteritis and their relationship to the disease activity: analysis of 204 Korean patients at a single center. Int J Cardiol 159:14–20. doi:10.1016/j.ijcard.2011.01.094

    Article  PubMed  Google Scholar 

  79. Li C, Liu Y, Qi R et al (2013) Repair of aortic regurgitation due to Takayasu arteritis. Heart Surg Forum 16:E24–E26. doi:10.1532/hsf98.20121059

    Article  PubMed  Google Scholar 

  80. Misra R, Aggarwal A, Chag M, Sinha N, Shrivastava S (1994) Raised anticardiolipin antibodies in Takayasu’s arteritis. Lancet 343:1644–1645

    Article  CAS  PubMed  Google Scholar 

  81. Jordan NP, Bezanahary H, D’Cruz DP (2015) Increased risk of vascular complications in Takayasu’s arteritis patients with positive lupus anticoagulant. Scand J Rheumatol 44:211–214. doi:10.3109/03009742.2014.964305

    Article  CAS  PubMed  Google Scholar 

  82. Castellani M, Vanoli M, Cali G et al (2001) Ventilation-perfusion lung scan for the detection of pulmonary involvement in Takayasu’s arteritis. Eur J Nucl Med 28:1801–1805. doi:10.1007/s002590100648

    Article  CAS  PubMed  Google Scholar 

  83. Wang X, Dang A, Chen B, Lv N, Liu Q (2015) Takayasu arteritis-associated pulmonary hypertension. J Rheumatol 42:495–503. doi:10.3899/jrheum.140436

    Article  PubMed  Google Scholar 

  84. Dong H, Jiang X, Peng M et al (2014) Percutaneous transluminal angioplasty for symptomatic pulmonary stenosis in Takayasu arteritis. J Rheumatol 41:1856–1862. doi:10.3899/jrheum.131007

    Article  PubMed  Google Scholar 

  85. Kim GB, Kwon BS, Bae EJ, Noh CI (2012) Takayasu arteritis presenting as dilated cardiomyopathy with left ventricular thrombus in association with ulcerative colitis. J Am Coll Cardiol 60:e25. doi:10.1016/j.jacc.2011.11.080

    Article  PubMed  Google Scholar 

  86. Seker T, Baykan AO, Borekci A, Gur M, Cayli M (2014) Successful treatment of a huge thrombus with thrombolytic therapy in a patient with normal left ventricle function and Takayasu arteritis. Turk Kardiyol Dern Ars 42:763–766. doi:10.5543/tkda.2014.60687

    Article  PubMed  Google Scholar 

  87. da Silva TF, Levy-Neto M, Bonfa E, Pereira RM (2013) High prevalence of metabolic syndrome in Takayasu arteritis: increased cardiovascular risk and lower adiponectin serum levels. J Rheumatol 40:1897–1904. doi:10.3899/jrheum.130162

    Article  PubMed  CAS  Google Scholar 

  88. Matsue Y, Ohno M, Nagahori W et al (2011) A case of giant cell arteritis with massive pericardial effusion. Heart Vessels 26:562–564. doi:10.1007/s00380-010-0101-5

    Article  PubMed  Google Scholar 

  89. Kimura T, Komura M, Okubo Y (2012) Atypical giant cell arteritis predominantly involving intramural coronary arteries: a case showing refractory dialysis-related hypotension. Heart Vessels 27:216–220. doi:10.1007/s00380-011-0158-9

    Article  PubMed  Google Scholar 

  90. Strecker T, Zimmermann S, Wachter DL, Agaimy A (2011) Aortic dissection caused by giant cell arteritis. Heart Surg Forum 14:E137–E138. doi:10.1532/hsf98.20101114

    Article  PubMed  Google Scholar 

  91. Tomasson G, Peloquin C, Mohammad A et al (2014) Risk for cardiovascular disease early and late after a diagnosis of giant-cell arteritis: a cohort study. Ann Intern Med 160:73–80. doi:10.7326/m12-3046

    Article  PubMed  PubMed Central  Google Scholar 

  92. Schmidt J, Kermani TA, Muratore F et al (2013) Statin use in giant cell arteritis: a retrospective study. J Rheumatol 40:910–915. doi:10.3899/jrheum.121150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gasparovic H, Djuric Z, Bosnic D et al (2011) Aortic root vasculitis associated with Cogan’s syndrome. Ann Thorac Surg 92:340–341. doi:10.1016/j.athoracsur.2010.12.068

    Article  PubMed  Google Scholar 

  94. Weyn T, Haine S, Conraads V (2009) Cogan’s syndrome with left main coronary artery occlusion. Cardiol J 16:573–576

    PubMed  Google Scholar 

  95. Geri G, Wechsler B, Thi Huong du L et al (2012) Spectrum of cardiac lesions in Behcet disease: a series of 52 patients and review of the literature. Medicine (Baltimore) 91:25–34. doi:10.1097/MD.0b013e3182428f49

    Article  Google Scholar 

  96. Bonitsis NG, Luong Nguyen LB, LaValley MP et al (2015) Gender-specific differences in Adamantiades–Behcet’s disease manifestations: an analysis of the German registry and meta-analysis of data from the literature. Rheumatology (Oxford) 54:121–133. doi:10.1093/rheumatology/keu247

    Article  Google Scholar 

  97. Emmungil H, Yasar Bilge NS, Kucuksahin O et al (2014) A rare but serious manifestation of Behcet’s disease: intracardiac thrombus in 22 patients. Clin Exp Rheumatol 32:S87–S92

    PubMed  Google Scholar 

  98. La Regina M, Gasparyan AY, Orlandini F, Prisco D (2010) Behcet’s disease as a model of venous thrombosis. Open Cardiovasc Med J 4:71–77. doi:10.2174/1874192401004020071

    PubMed  PubMed Central  Google Scholar 

  99. Yue C, Li J, Li M et al (2012) Cardiac mass in Behcet’s disease. Clin Exp Rheumatol 30:S27–S31

    CAS  PubMed  Google Scholar 

  100. Ma WG, Zheng J, Zhu JM et al (2012) Aortic regurgitation caused by Behcet’s disease: surgical experience during an 11-year period. J Card Surg 27:39–44. doi:10.1111/j.1540-8191.2011.01392.x

    Article  PubMed  Google Scholar 

  101. Ulusan Z, Karadag AS, Tasar M, Kalender M, Darcin OT (2014) Behcet’s disease and cardiovascular involvement: our experience of asymptomatic Behcet’s patients. Cardiovasc J Afr 25:63–66. doi:10.5830/CVJA-2014-003

    Article  PubMed  PubMed Central  Google Scholar 

  102. Demirelli S, Degirmenci H, Bilen H et al (2014) Left ventricular mechanics in Behcet’s disease: a speckle tracking echocardiographic study. Bosn J Basic Med Sci 14:160–164. doi:10.17305/bjbms.2014.3.2

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yagmur J, Sener S, Acikgoz N et al (2011) Subclinical left ventricular dysfunction in Behcet’s disease assessed by two-dimensional speckle tracking echocardiography. Eur J Echocardiogr 12:536–541. doi:10.1093/ejechocard/jer088

    Article  PubMed  Google Scholar 

  104. Cobankara V, Guclu A, Kuru O et al (2012) Evaluation of biventricular myocardial performance index in patients with Behcet’s disease. J Int Med Res 40:328–332

    Article  CAS  PubMed  Google Scholar 

  105. Cansel M, Yagmur J, Tasolar H et al (2014) Assessment of atrial conduction time in patients with Behcet’s disease. Acta Reumatol Port 39:29–36

    PubMed  Google Scholar 

  106. Sayin MR, Akpinar I, Gursoy YC et al (2013) Assessment of QRS duration and presence of fragmented QRS in patients with Behcet’s disease. Coron Artery Dis 24:398–403. doi:10.1097/MCA.0b013e328361a978

    Article  PubMed  Google Scholar 

  107. Karabag T, Aydin M, Dogan SM et al (2012) Investigation of the atrial electromechanical delay duration in Behcet patients by tissue Doppler echocardiography. Eur Heart J Cardiovasc Imaging 13:251–256. doi:10.1093/ejechocard/jer227

    Article  PubMed  Google Scholar 

  108. Borman P, Tuncay F, Kocaoglu S et al (2012) The subclinic autonomic dysfunction in patients with Behcet disease: an electrophysiological study. Clin Rheumatol 31:41–47. doi:10.1007/s10067-011-1763-9

    Article  PubMed  Google Scholar 

  109. Pandey A, Garg J, Krishnamoorthy P et al (2014) Predictors of coronary artery disease in patients with Behçet’s disease. Cardiology (Switzerland) 129:203–206. doi:10.1159/000365139

    CAS  Google Scholar 

  110. Tasolar H, Tasolar S, Kurtulus D et al (2014) Increased epicardial adipose tissue thickness on transthoracic echocardiography in patients with Behcet disease. J Ultrasound Med 33:1393–1400. doi:10.7863/ultra.33.8.1393

    Article  PubMed  Google Scholar 

  111. Kocabay G, Hasdemir H, Yildiz M (2012) Evaluation of pulse wave velocity in systemic lupus erythematosus, rheumatoid arthritis and Behcet’s disease. J Cardiol 59:72–77. doi:10.1016/j.jjcc.2011.09.004

    Article  PubMed  Google Scholar 

  112. Balta I, Balta S, Koryurek OM et al (2014) Mean platelet volume is associated with aortic arterial stiffness in patients with Behcet’s disease without significant cardiovascular involvement. J Eur Acad Dermatol Venereol 28:1388–1393. doi:10.1111/jdv.12297

    Article  CAS  PubMed  Google Scholar 

  113. Botsios C, Sfriso P, Punzi L, Todesco S (2007) Non-complementaemic urticarial vasculitis: successful treatment with the IL-1 receptor antagonist, anakinra. Scand J Rheumatol 36:236–237. doi:10.1080/03009740600938647

    Article  CAS  PubMed  Google Scholar 

  114. Boyer EM, Turman M, O’Neil KM (2011) Partial response to anakinra in life-threatening Henoch–Schönlein purpura: case report. Pediatr Rheumatol Online J 9:21. doi:10.1186/1546-0096-9-21

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wei L, MacDonald TM, Walker BR (2004) Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease. Ann Intern Med 141:764–770

    Article  PubMed  Google Scholar 

  116. Souverein PC, Berard A, Van Staa TP et al (2004) Use of oral glucocorticoids and risk of cardiovascular and cerebrovascular disease in a population based case-control study. Heart 90:859–865. doi:10.1136/hrt.2003.020180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Varas-Lorenzo C, Rodriguez LA, Maguire A, Castellsague J, Perez-Gutthann S (2007) Use of oral corticosteroids and the risk of acute myocardial infarction. Atherosclerosis 192:376–383. doi:10.1016/j.atherosclerosis.2006.05.019

    Article  CAS  PubMed  Google Scholar 

  118. Dadfarmay S, Berkowitz R, Kim B (2012) Irreversible end-stage cardiomyopathy following a single dose of cyclophosphamide. Congest Heart Fail 18:234–237. doi:10.1111/j.1751-7133.2011.00279.x

    Article  PubMed  Google Scholar 

  119. Agarwal N, Burkart TA (2013) Transient, high-grade atrioventricular block from high-dose cyclophosphamide. Tex Heart Inst J 40:626–627

    PubMed  PubMed Central  Google Scholar 

  120. Zhou F, Ling C, Guo L et al (2014) Continuous low-dose cyclophosphamide and prednisone in the treatment of relapsed/refractory multiple myeloma with severe heart failure. Leuk Lymphoma 55:2271–2276. doi:10.3109/10428194.2014.887711

    Article  CAS  PubMed  Google Scholar 

  121. Ajeganova S, de Faire U, Jogestrand T, Frostegard J, Hafstrom I (2012) Carotid atherosclerosis, disease measures, oxidized low-density lipoproteins, and atheroprotective natural antibodies for cardiovascular disease in early rheumatoid arthritis—an inception cohort study. J Rheumatol 39:1146–1154. doi:10.3899/jrheum.111334

    Article  PubMed  Google Scholar 

  122. Ahlehoff O, Skov L, Gislason G et al (2015) Cardiovascular outcomes and systemic anti-inflammatory drugs in patients with severe psoriasis: 5-year follow-up of a Danish nationwide cohort. J Eur Acad Dermatol Venereol 29:1128–1134. doi:10.1111/jdv.12768

    Article  CAS  PubMed  Google Scholar 

  123. Westlake SL, Colebatch AN, Baird J et al (2010) The effect of methotrexate on cardiovascular disease in patients with rheumatoid arthritis: a systematic literature review. Rheumatology (Oxford) 49:295–307. doi:10.1093/rheumatology/kep366

    Article  CAS  Google Scholar 

  124. Micha R, Imamura F, Wyler von Ballmoos M et al (2011) Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. Am J Cardiol 108:1362–1370. doi:10.1016/j.amjcard.2011.06.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. De Vecchis R, Baldi C, Palmisani L (2015) Protective effects of methotrexate against ischemic cardiovascular disorders in patients treated for rheumatoid arthritis or psoriasis: novel therapeutic insights coming from a meta-analysis of the literature data. Anatol J Cardiol. doi:10.5152/akd.2015.6136

    Google Scholar 

  126. Thornton CC, Al-Rashed F, Calay D et al (2015) Methotrexate-mediated activation of an AMPK-CREB-dependent pathway: a novel mechanism for vascular protection in chronic systemic inflammation. Ann Rheum Dis. doi:10.1136/annrheumdis-2014-206305

    PubMed  Google Scholar 

  127. Ronda N, Greco D, Adorni MP et al (2015) Newly identified antiatherosclerotic activity of methotrexate and adalimumab: complementary effects on lipoprotein function and macrophage cholesterol metabolism. Arthritis Rheumatol 67:1155–1164. doi:10.1002/art.39039

    Article  CAS  PubMed  Google Scholar 

  128. Bulgarelli A, Leite AC Jr, Dias AA, Maranhao RC (2013) Anti-atherogenic effects of methotrexate carried by a lipid nanoemulsion that binds to LDL receptors in cholesterol-fed rabbits. Cardiovasc Drugs Ther 27:531–539. doi:10.1007/s10557-013-6488-3

    Article  CAS  PubMed  Google Scholar 

  129. Moreira DM, Lueneberg ME, da Silva RL, Fattah T, Mascia Gottschall CA (2013) Rationale and design of the TETHYS trial: the effects of methotrexate therapy on myocardial infarction with ST-segment elevation. Cardiology 126:167–170. doi:10.1159/000351972

    Article  CAS  PubMed  Google Scholar 

  130. Zanoli L, Rastelli S, Inserra G et al (2014) Increased arterial stiffness in inflammatory bowel diseases is dependent upon inflammation and reduced by immunomodulatory drugs. Atherosclerosis 234:346–351. doi:10.1016/j.atherosclerosis.2014.03.023

    Article  CAS  PubMed  Google Scholar 

  131. Pols TW, Bonta PI, Pires NM et al (2010) 6-Mercaptopurine inhibits atherosclerosis in apolipoprotein e*3-leiden transgenic mice through atheroprotective actions on monocytes and macrophages. Arterioscler Thromb Vasc Biol 30:1591–1597. doi:10.1161/atvbaha.110.205674

    Article  CAS  PubMed  Google Scholar 

  132. Spagnoletti G, Citterio F, Favi E et al (2009) Cardiovascular risk profile in kidney transplant recipients treated with two immunosuppressive regimens: tacrolimus and mycophenolate mofetil versus everolimus and low-dose cyclosporine. Transpl Proc 41:1175–1177. doi:10.1016/j.transproceed.2009.03.045

    Article  CAS  Google Scholar 

  133. Cuervas-Mons V, Herrero JI, Gomez MA et al (2015) Impact of tacrolimus and mycophenolate mofetil regimen vs. a conventional therapy with steroids on cardiovascular risk in liver transplant patients. Clin Transplant 29:667–677. doi:10.1111/ctr.12557

    Article  CAS  PubMed  Google Scholar 

  134. van Leuven SI, Mendez-Fernandez YV, Wilhelm AJ et al (2012) Mycophenolate mofetil but not atorvastatin attenuates atherosclerosis in lupus-prone LDLr(−/−) mice. Ann Rheum Dis 71:408–414. doi:10.1136/annrheumdis-2011-200071

    Article  PubMed  CAS  Google Scholar 

  135. van Sijl AM, van der Weele W, Nurmohamed MT (2014) Myocardial infarction after rituximab treatment for rheumatoid arthritis: is there a link? Curr Pharm Des 20:496–499

    Article  PubMed  CAS  Google Scholar 

  136. Passalia C, Minetto P, Arboscello E et al (2013) Cardiovascular adverse events complicating the administration of rituximab: report of two cases. Tumori 99:288e–292e. doi:10.1700/1390.15471

    PubMed  Google Scholar 

  137. Fernandez-Nebro A, Marenco JL, Lopez-Longo F et al (2014) The effects of rituximab on the lipid profile of patients with active systemic lupus erythematosus: results from a nationwide cohort in Spain (LESIMAB). Lupus 23:1014–1022. doi:10.1177/0961203314534909

    Article  PubMed  CAS  Google Scholar 

  138. Raterman HG, Levels H, Voskuyl AE et al (2013) HDL protein composition alters from proatherogenic into less atherogenic and proinflammatory in rheumatoid arthritis patients responding to rituximab. Ann Rheum Dis 72:560–565. doi:10.1136/annrheumdis-2011-201228

    Article  CAS  PubMed  Google Scholar 

  139. Provan SA, Berg IJ, Hammer HB et al (2015) The impact of newer biological disease modifying anti-rheumatic drugs on cardiovascular risk factors: a 12-month longitudinal study in rheumatoid arthritis patients treated with rituximab, abatacept and tociliziumab. PLoS One 10:e0130709. doi:10.1371/journal.pone.0130709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Hsue PY, Scherzer R, Grunfeld C et al (2014) Depletion of B-cells with rituximab improves endothelial function and reduces inflammation among individuals with rheumatoid arthritis. J Am Heart Assoc 3:e001267. doi:10.1161/jaha.114.001267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Clifford A, Hoffman GS (2014) Recent advances in the medical management of Takayasu arteritis: an update on use of biologic therapies. Curr Opin Rheumatol 26:7–15. doi:10.1097/bor.0000000000000004

    Article  CAS  PubMed  Google Scholar 

  142. Levine B, Kalman J, Mayer L, Fillit HM, Packer M (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323:236–241. doi:10.1056/nejm199007263230405

    Article  CAS  PubMed  Google Scholar 

  143. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107:3133–3140. doi:10.1161/01.cir.0000077913.60364.d2

    Article  CAS  PubMed  Google Scholar 

  144. Solomon DH, Rassen JA, Kuriya B et al (2013) Heart failure risk among patients with rheumatoid arthritis starting a TNF antagonist. Ann Rheum Dis 72:1813–1818. doi:10.1136/annrheumdis-2012-202136

    Article  CAS  PubMed  Google Scholar 

  145. Westlake SL, Colebatch AN, Baird J et al (2011) Tumour necrosis factor antagonists and the risk of cardiovascular disease in patients with rheumatoid arthritis: a systematic literature review. Rheumatology (Oxford) 50:518–531. doi:10.1093/rheumatology/keq316

    Article  CAS  Google Scholar 

  146. Roubille C, Richer V, Starnino T et al (2015) The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann Rheum Dis 74:480–489. doi:10.1136/annrheumdis-2014-206624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Souto A, Salgado E, Maneiro JR et al (2015) Lipid profile changes in patients with chronic inflammatory arthritis treated with biologic agents and tofacitinib in randomized clinical trials: a systematic review and meta-analysis. Arthritis Rheumatol 67:117–127. doi:10.1002/art.38894

    Article  CAS  PubMed  Google Scholar 

  148. Strang AC, Bisoendial RJ, Kootte RS et al (2013) Pro-atherogenic lipid changes and decreased hepatic LDL receptor expression by tocilizumab in rheumatoid arthritis. Atherosclerosis 229:174–181. doi:10.1016/j.atherosclerosis.2013.04.031

    Article  CAS  PubMed  Google Scholar 

  149. Schultz O, Oberhauser F, Saech J et al (2010) Effects of inhibition of interleukin-6 signalling on insulin sensitivity and lipoprotein (a) levels in human subjects with rheumatoid diseases. PLoS One 5:e14328. doi:10.1371/journal.pone.0014328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kume K, Amano K, Yamada S et al (2011) Tocilizumab monotherapy reduces arterial stiffness as effectively as etanercept or adalimumab monotherapy in rheumatoid arthritis: an open-label randomized controlled trial. J Rheumatol 38:2169–2171. doi:10.3899/jrheum.110340

    Article  CAS  PubMed  Google Scholar 

  151. Lazzerini PE, Acampa M, Capecchi PL et al (2015) Antiarrhythmic potential of anticytokine therapy in rheumatoid arthritis: tocilizumab reduces corrected QT interval by controlling systemic inflammation. Arthritis Care Res (Hoboken) 67:332–339. doi:10.1002/acr.22455

    Article  CAS  Google Scholar 

  152. Ursini F, Mauro D, Naty S, Gagliardi D, Grembiale RD (2012) Improvement in insulin resistance after short-term treatment with abatacept: case report and short review. Clin Rheumatol 31:1401–1402. doi:10.1007/s10067-012-2034-0

    Article  PubMed  Google Scholar 

  153. Ursini F, Russo E, Letizia Hribal M et al (2015) Abatacept improves whole-body insulin sensitivity in rheumatoid arthritis: an observational study. Medicine (Baltimore) 94:e888. doi:10.1097/md.0000000000000888

    Article  CAS  Google Scholar 

  154. Mathieu S, Couderc M, Glace B et al (2013) Effects of 6 months of abatacept treatment on aortic stiffness in patients with rheumatoid arthritis. Biologics 7:259–264. doi:10.2147/btt.s52003

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Vanrenterghem Y, Bresnahan B, Campistol J et al (2011) Belatacept-based regimens are associated with improved cardiovascular and metabolic risk factors compared with cyclosporine in kidney transplant recipients (BENEFIT and BENEFIT-EXT studies). Transplantation 91:976–983. doi:10.1097/TP.0b013e31820c10eb

    Article  CAS  PubMed  Google Scholar 

  156. Nowak C, Sundstrom J, Gustafsson S et al (2016) Protein biomarkers for insulin resistance and type 2 diabetes risk in two large community cohorts. Diabetes 65:276–284. doi:10.2337/db15-0881

    CAS  PubMed  Google Scholar 

  157. Fragoso JM, Delgadillo H, Llorente L et al (2010) Interleukin 1 receptor antagonist polymorphisms are associated with the risk of developing acute coronary syndrome in Mexicans. Immunol Lett 133:106–111. doi:10.1016/j.imlet.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  158. Johansen NB, Vistisen D, Brunner EJ et al (2012) Determinants of aortic stiffness: 16-year follow-up of the Whitehall II study. PLoS One 7:e37165. doi:10.1371/journal.pone.0037165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ikonomidis I, Tzortzis S, Lekakis J et al (2011) Association of soluble apoptotic markers with impaired left ventricular deformation in patients with rheumatoid arthritis. Effects of inhibition of interleukin-1 activity by anakinra. Thromb Haemost 106:959–967. doi:10.1160/th11-02-0117

    Article  CAS  PubMed  Google Scholar 

  160. Ridker PM, Howard CP, Walter V et al (2012) Effects of interleukin-1beta inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation 126:2739–2748. doi:10.1161/circulationaha.112.122556

    Article  CAS  PubMed  Google Scholar 

  161. Ridker PM (2013) Closing the loop on inflammation and atherothrombosis: why perform the CIRT and CANTOS trials? Trans Am Clin Climatol Assoc 124:174–190

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr Vikas Agarwal and Professor Vir Singh Negi for their encouragement and suggestions toward improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durga Prasanna Misra.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, D.P., Shenoy, S.N. Cardiac involvement in primary systemic vasculitis and potential drug therapies to reduce cardiovascular risk. Rheumatol Int 37, 151–167 (2017). https://doi.org/10.1007/s00296-016-3435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-016-3435-1

Keywords

Navigation