Skip to main content
Log in

Improvement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Microsomal omega-3 fatty acid desaturase is an essential enzyme in the production of the n-3 polyunsaturated fatty acid α-linolenic acid during the seed developing stage. We have constructed a chimeric gene consisting of a maize Ubi1-P-int and a soybean GmFAD3 cDNA, which was introduced into rice plants by Agrobacterium-mediated transformation. Ten transformants containing the chimeric gene were established and expression subsequently confirmed by Northern blotting. Furthermore, α-linolenic acid content of the T1 seeds increased dramatically up to tenfold that of the control, and this phenotype was also stably inherited in the T2 and T3 progenies. These results demonstrate that the α-linolenic acid content of rice seed oil can easily be altered using the combination of a high-activity promoter and a GmFAD3 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3A, B.
Fig. 4.

Similar content being viewed by others

Abbreviations

Adh :

Alcohol dehydrogenase

BAP :

6-Benzylaminopurine

CaMV :

Cauliflower mosaic virus

CTAB :

Cetyltrimethylammonium bromide

DIG :

Digoxigenin

EGFP :

Enhanced green fluorescence protein

GUS :

β-Glucuronidase

LUC :

Luciferase

NAA :

α-Naphthaleneacetic acid

RT-PCR :

Reverse transcription-polymerase chain reaction

SDS :

Sodium dodecyl sulfate

References

  • Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville C (1992) Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258:1353–1355

    PubMed  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    PubMed  Google Scholar 

  • Blight EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  • Browse J, Somerville C (1991) Glycerolipid synthesis: biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42:467–506

    Article  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation, Plant Mol Biol 18:675–689

    CAS  PubMed  Google Scholar 

  • Comczynski P (1992) One-hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal Biochem 201:134–139

    CAS  PubMed  Google Scholar 

  • Cornejo M-J, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23:567–581

    CAS  PubMed  Google Scholar 

  • Crawford M, Galli C, Visioli F, Renaud S, Simopoulos AP, Spector AA (2000) Role of plant-derived omega-3 fatty acids in human nutrition. Ann Nutr Metab 44:263–265

    Article  CAS  PubMed  Google Scholar 

  • Green AG (1986) Genetic control of polyunsaturated fatty acid biosynthesis in flax (Linum usitatissimum) seed oil. Theor Appl Genet 72:654–661

    CAS  Google Scholar 

  • Hamada T, Kodama H, Nishimura N, Iba K (1994) Cloning of a cDNA encoding tobacco ω-3 fatty acid desaturase. Gene 147:293–294

    CAS  PubMed  Google Scholar 

  • Hoekema A, Horsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    CAS  Google Scholar 

  • Holsters M, de Waele D, Depicker A, Massens E, Van Montagu M, Schell J (1978) Transfection and transformation of A. tumefaciens. Mol Gen Genet 163:181–187

    CAS  PubMed  Google Scholar 

  • Kankaanpaa P, Sutas Y, Salminen S, Lichtenstein A, Isolauri E (1999) Dietary fatty acids and allergy. Ann Med 31:282–287

    CAS  PubMed  Google Scholar 

  • Kodama H, Akagi H, Kusumi K, Fujimura T, Iba K (1997) Structure, chromosomal location and expression of a rice gene encoding the microsome ω-3 fatty acid desaturase. Plant Mol Biol 33:493–502

    Article  CAS  PubMed  Google Scholar 

  • Lee D-S, Noh B-S, Bae S-Y, Kim K (1998) Characterization of fatty acids composition in vegetable oil by gas chromatography and chemometrics. Anal Chem Acta 358:163–175

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    CAS  PubMed  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  CAS  Google Scholar 

  • Shimada T, Wakita Y, Otani M, Iba K (2000) Modification of fatty acid composition in rice plants by transformation with a tobacco microsomal ω-3 fatty acid desaturase gene (NtFAD3). Plant Biotechnol 17:43–48

    CAS  Google Scholar 

  • Simopoulos AP (1991) Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 54:438–463

    CAS  PubMed  Google Scholar 

  • Taira H, Chang W-I (1986) Lipid content and fatty acid composition of Indica and Japonica types of nonglutinous brown rice. J Agric Food Chem 34:542–545

    CAS  Google Scholar 

  • Taira H, Itani T (1988) Lipid content and fatty acid composition of brown rice of cultivars of the United States. J Agric Food Chem 36:460–462

    CAS  Google Scholar 

  • Taira H, Nakagahara M, Nagamine T (1988) Fatty acid composition of indica, sincia, javanica, and japonica groups of nonglutinous brown rice. J Agric Food Chem 36:45–47

    CAS  Google Scholar 

  • Toki S (1997) Rapid and efficient Agrobacterium–mediated transformation in rice. Plant Mol Biol Rep 15:16–21

    CAS  Google Scholar 

  • Toki S, Takamatsu S, Nojiri C, Ooba S, Anzai H, Iwata M, Christensen AH, Uchimiya H (1992) Expression of a maize ubiquitin gene promoter-bar chimeric gene in transgenic rice plants. Plant Physiol 100:1503–1507

    CAS  Google Scholar 

  • Wakita Y, Otani M, Iba K, Shimada T (1998) Co-integration, co-expression and co-segregation of an unlinked selectable marker gene and NtFAD3 gene in transgenic rice plants produced by particle bombardment. Genes Genet Syst 73:219–226

    Article  CAS  PubMed  Google Scholar 

  • Yadav NS, Wierzbicki A, Aegerter M, Caster CS, Perez-Grau L, Kinney AJ, Hitz WD, Booth JR, Schweiger B Jr, Stecca KL, Allen SM, Blackwell M, Reiter RS, Carlson TJ, Russell SH, Feldmann KA, Pierce J, Browse J (1993) Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol 103:133–137

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Hirofumi Uchimiya (University of Tokyo) and Dr. Hirokazu Tsukaya (National Institute for Basic Biology) for providing the pUBA and pHTS6.1 plasmids, respectively. This study was supported by Grants-in-Aid for Scientific Research of Science and Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Anai.

Additional information

Communicated by H. Uchimiya

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anai, T., Koga, M., Tanaka, H. et al. Improvement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene. Plant Cell Rep 21, 988–992 (2003). https://doi.org/10.1007/s00299-003-0609-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-003-0609-6

Keywords

Navigation