Skip to main content
Log in

Antifungal activity of stilbenes in in vitro bioassays and in transgenic Populus expressing a gene encoding pinosylvin synthase

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The effect of two stilbene compounds, pinosylvin and resveratrol, on the growth of several fungi was evaluated in plate tests. Wood decay tests were carried out with birch and aspen samples impregnated with the two stilbenes. In plate experiments, resveratrol had an enhancing effect on growth at concentrations where pinosylvin was already enough to prevent the growth of most fungi studied. Pinosylvin impregnated at 0.2% (w/w) concentration significantly reduced the decay caused by all fungi except Phellinus tremulae. In contrast, a resveratrol content of 0.8%, did not protect the wood from decay. A pinosylvin-synthase-encoding gene from Pinus sylvestris was transferred into aspen (Populus tremula) and two hybrid aspen clones (Populus tremula×tremuloides) by Agrobacterium tumefaciens-mediated transformation. Transgenic plants accumulated pinosylvin synthase-specific mRNA and showed stilbene synthase enzyme activity in vitro. Transgenic aspen line H4 showed increased resistance to Phellinus tremulae, while two hybrid aspen transformants decayed faster than the control trees. However, we were unable to detect the accumulation of stilbenes in the transgenic plantlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adrian M, Jeandet P, Veneau J, Weston L, Bessis R (1997) Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J Chem Ecol 23:1689–1702

    CAS  Google Scholar 

  • Allina SM, Pri-Hadash A, Theilmann DA, Ellis BE, Douglas CJ (1998) 4-Coumarate:Coenzyme A ligase in hybrid poplar. Properties of native enzymes, cDNA cloning, and analysis of recombinant enzymes. Plant Physiol 116:743–754

    Article  CAS  PubMed  Google Scholar 

  • Bala A, Kollmann A, Ducrot P-H, Majira A, Kerhoas L, Delorme R, Einhorn J (1999) Antifungal activity of resveratrol oligomers from Cyphostemma crotalarioides. Pestic Sci 55:197–218

    Article  Google Scholar 

  • Cerny A (1972) Phellinus tremulae (Bond.) Bond. et Borisov—a most serious fungal parasite of aspen trees. Acta Univ Agric Brno C41:131–149

    Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    CAS  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing (DNA methylation/UV crosslinking/filter hybridization/immunoglobulin genes). Proc Natl Acad Sci USA 81:1991–1995

    CAS  PubMed  Google Scholar 

  • Coutos-Thevenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter. J Exp Bot 52:901–910

    Article  PubMed  Google Scholar 

  • Ehlting J, Büttner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E (1999) Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionary divergent classes in angiosperms. Plant J 19:9–20

    PubMed  Google Scholar 

  • Erdtman H (1939) Tallkärnvedens extraktivämnen och deras inverkan på uppslutningen enligt sulfitmetoden. Sven Papperstidn 42:344–349

    CAS  Google Scholar 

  • Erdtman H, Frank A, Lindstedt G (1951) Constituents of pine heartwood. XXVII. The content of pinosylvin phenols in Swedish pines. Sven Papperstidn 54:275–279

    CAS  Google Scholar 

  • Fliegmann J, Schröder G, Schanz S, Britsch L, Schröder J (1992) Molecular analysis of chalcone and dihydropinosylvin synthase from Scots pine (Pinus sylvestris), and differential regulation of these and related enzyme activities in stressed plants. Plant Mol Biol 18:489–503

    CAS  PubMed  Google Scholar 

  • Frykholm KO (1945) Bacteriological studies of pinosylvine, its monomethyl and dimethyl ethers, and toxicologic studies of pinosylvine. Nature 155:454–455

    CAS  Google Scholar 

  • Gehlert R, Schöppner A, Kindl H (1990) Stilbene synthase from seedlings of Pinus sylvestris: purification and induction in response to fungal infection. Mol Plant Microbe Interact 3:444–449

    CAS  Google Scholar 

  • Grand C, Boudet A, Boudet AM (1983) Isoenzymes of hydroxycinnamate:CoA ligase from poplar stems properties and tissue distribution. Planta 158:225–229

    CAS  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369

    CAS  Google Scholar 

  • Hain R, Grimmig B (2000) Modification of plant secondary metabolism by genetic engineering. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer, Dordrecht, pp 217–231

  • Hain R, Bieseler B, Kindl H, Schröder G, Stöcker R (1990) Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol 15:325–335

    PubMed  Google Scholar 

  • Hain R, Reif HJ, Langebartels R, Schreier PH, Stöcker RH, Thomzik JE, Stenzel K (1992) Foreign phytoalexin expression in plants results in increased disease resistance. In: Proceedings of Brighton crop protection conference—pests and diseases. British Crop Protection Council, Alton, UK, pp 757–766

  • Hain R, Reif H-J, Krause E, Langbartels R, Kindl H, Vornam B, Wiese W, Schelzer E, Schreier PH, Stöcker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    CAS  PubMed  Google Scholar 

  • Hart J (1981) Role of phytostilbenes in decay and disease resistance. Annu Rev Phytopathol 19:437–458

    Article  CAS  Google Scholar 

  • Hart J, Hillis W (1974) Inhibition of wood-rotting fungi by stilbenes and other polyphenols in Eucalyptus sideroxylon. Phytopathology 64:939–948

    CAS  Google Scholar 

  • Henriks M-L, Ekman R, von Weissenberg K (1979) Bioassay of some resin and fatty acids with Fomes annosus. Acta Acad Abo Ser B 34:9

    Google Scholar 

  • Hiorth J (1965) The phenoloxidase and peroxidase activities of two culture types of Phellinus tremulae (Bond.) Bond. et Boriss. Medd Nor Skogforsöksves 20:249–272

  • Hipskind JD, Paiva NL (1998) Phytoalexin engineering in alfalfa: introduction of a resveratrol synthase from Arachis hypogaea. In: 7th International Congress of Plant Pathology, Abstracts vol 2. 9–16 August 1998, Edinburgh, Scotland

  • Hoos G, Blaich R (1990) Influence of resveratrol on germination of conidia and mycelial growth of Botrytis cinerea and Phomopsis viticola. J Phytopathol 129:102–110

    CAS  Google Scholar 

  • Hopp H (1936) Appearance of Fomes igniarius in culture. Phytopathology 26:915–917

    Google Scholar 

  • Kobayashi S, Ding CK, Nakamura Y, Nakajima I, Matsumoto R (2000) Kiwifruits (Actinia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Rep 19:904–910

    Google Scholar 

  • Leckband G, Lörz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Genet 96:1004–1012

    Article  CAS  Google Scholar 

  • Lee D, Douglas CJ (1996) Two divergent members of a tobacco 4-coumarate:Coenzyme A ligase (4CL) gene family. Plant Physiol 112:193–205

    CAS  PubMed  Google Scholar 

  • Lindstedt G (1951) Constituents of pine heartwood. XXV. Acta Chem Scand 5:129–138

    CAS  Google Scholar 

  • Lindstedt G, Misiorny A (1951) Constituents of pine heartwood. XXVI. Acta Chem Scand 5:121–128

    CAS  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Int Plant Propagator’s Soc Proc 30:421–427

    Google Scholar 

  • Lofty S, Fleuriet A, Ramos T, Macheix J-J (1989) Biosynthesis of phenolic compounds in Vitis vinifera cell suspension cultures: study on hydroxycinnamoyl CoA-ligase. Plant Cell Rep 8:93–96

    CAS  Google Scholar 

  • Loman A (1970) Bioassays of fungi isolated from Pinus contorta var. latifolia with pinosylvin, pinosylvinmonomethyl ether, pinobanksin, and pinocembrin. Can J Bot 48:1303–1308

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Niemelä T (1974) On fennoscandian polypores. III. Phellinus tremulae (Bond.) Bond. & Borisov. Ann Bot Fennici 11:202–215

    Google Scholar 

  • Pappinen A, Degefu Y, Syrjälä L, Keinonen K, von Weissenberg K (2002) Transgenic silver birch (Betula pendula) expressing sugarbeet chitinase 4 shows enhanced resistance to Pyrenopeziza betulicola. Plant Cell Rep 20:1046–1051

    Article  CAS  Google Scholar 

  • Paul B, Chereyathmanjiyil A, Masih I, Chapuis L, Benoît A (1998) Biological control of Botrytis cinerea causing grey mould disease of grapevine and elicitation of stilbene phytoalexin (resveratrol) by a soil bacterium. FEMS Microbiol Lett 165:65–70

    Article  CAS  Google Scholar 

  • Rennerfelt E (1943) Die toxizität der Phenolischen Inhaltsstoffe des Kiefernkernholzes gegenüber einigen Fäulnispilzen. Sven Bot Tidskr 37:83–93

    Google Scholar 

  • Rennerfelt E (1945) The influence of the phenolic compounds in the heartwood of Scots pine (Pinus silvestris L.) on the growth of some decay fungi in nutrient solution. Sven Bot Tidskr 39:311–318

    Google Scholar 

  • Rennerfelt E, Nacht G (1955) The fungicidal activity of some constituents from heartwood of conifers. Sven Bot Tidskr 49:419–432

    Google Scholar 

  • Rosemann D, Heller W, Sandermann H (1991) Biochemical plant responses to ozone, II. Induction of stilbene biosynthesis in Scots pine (Pinus sylvestris L.) seedlings. Plant Physiol 97:1280–1286

    CAS  Google Scholar 

  • Sarig P, Zutkhi Y, Monjauze A, Lisker N, Ben-Arie R (1997) Phytoalexin elicitation in grape berries and their susceptibility to Rhizopus stolonifer. Physiol Mol Plant Pathol 50:337–347

    Article  CAS  Google Scholar 

  • Schwekendiek A, Pfeffer G, Kindl H (1992) Pine stilbene synthase cDNA, a tool for probing environmental stress. FEBS Lett 301:41–44

    Article  CAS  PubMed  Google Scholar 

  • Serazetdnova L, Lörz H (2002) Poster presentation at 1st EPSO Conference: networks in plant biology. 27–31 October 2002, Brunnen, Switzerland

    Google Scholar 

  • Shin N-H, Ryu S, Choi E, Kang S-H, Chang I-M, Min K, Kim Y (1998) Oxyresveratrol as the potent inhibitor on dopa oxidase activity of mushroom tyrosinase. Biochem Biophys Res Commun 243:801–803

    Article  CAS  PubMed  Google Scholar 

  • Skinnider L, Stoessl A (1986) The effect of the phytoalexins, lubimin, (−) maackiain, pinosylvin, and the related compounds dehydroloroglossol and hordatine M on human lymphoblastoid cell lines. Experientia 41:568–570

    Google Scholar 

  • Stark-Lorenzen P, Nelke B, Hänler G, Muhlbach HP, Thomzik JE (1997) Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.) Plant Cell Rep 16:668–673

    Google Scholar 

  • Thomzik JE (1993) Transformation in oilseed rape (Brassica napus L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol. 23. Plant protoplasts and genetic engineering IV. Springer, Berlin Heidelberg New York, pp 170–182

  • Thomzik J, Stenzel K, Stöcker R, Schreier P, Hain R, Stahl D (1997) Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51:265–278

    Article  CAS  Google Scholar 

  • Tian W-Z, Ding L, Cao S-Y, Dai S-H, Ye S-Q, Li L-C (1998) Rice transformation with a phytoalexin gene and bioassay of the transgenic plants. Acta Bot Sin 40:803–808

    CAS  Google Scholar 

  • Venäläinen M, Harju AM, Kainulainen P, Viitanen H, Nikulainen H (2003a) Variation in the decay resistance and its relationship with other wood characteristics in old Scots pines. Ann For Sci 60:409–417

    Article  Google Scholar 

  • Venäläinen M, Harju AM, Saranpää P, Kainulainen P, Tiitta M, Velling P (2003b) The concentration of phenolics in brown-rot decay resistant and susceptible Scots pine heartwood. Wood Sci Technol (in press)

  • Voo KS, Whetten RW, O’Malley DM, Sederoff RR (1995) 4-Coumarate:Coenzyme A ligase from loblolly pine xylem. Isolation, characterization, and complementary DNA cloning. Plant Physiol 108:85–97

    Article  CAS  PubMed  Google Scholar 

  • Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol 1:251–257

    CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (1999) Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol Plant 107:142–149

    Article  Google Scholar 

  • Zhang X-H, Chiang VL (1997) Molecular cloning of 4-coumarate:coenzyme A ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood. Plant Physiol 113:65–74

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TEKES, Kordelin foundation, Metsämiesten säätiö foundation, and the Ministry of Education supported this work financially. We wish to thank Dr. Joachim Schröder for his gift of plasmid pKK233-2 containing the pine stilbene synthase gene, Dr. Carlos Navarro for the statistical analysis of the transgenic trees, and Farzad Safavi for revising the language. We are also grateful to Tuula Laine and Lahja Pesonen for their excellent technical assistance and to all those who provided pure cultures of decay fungi (Table 1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-K. Seppänen.

Additional information

Communicated by P. Debergh

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seppänen, SK., Syrjälä, L., von Weissenberg, K. et al. Antifungal activity of stilbenes in in vitro bioassays and in transgenic Populus expressing a gene encoding pinosylvin synthase. Plant Cell Rep 22, 584–593 (2004). https://doi.org/10.1007/s00299-003-0728-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-003-0728-0

Keywords

Navigation