Skip to main content
Log in

Agrobacterium tumefaciens-mediated creeping bentgrass (Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Genetic transformation of creeping bentgrass mediated by Agrobacterium tumefaciens has been achieved. Embryogenic callus initiated from seeds (cv. Penn-A-4) was infected with an A. tumefaciens strain (LBA4404) harboring a super-binary vector that contained an herbicide-resistant bar gene driven either by the CaMV 35S promoter or a rice ubiquitin promoter. Plants were regenerated from 219 independent transformation events. The overall stable transformation efficiency ranged from 18% to 45%. Southern blot and genetic analysis confirmed transgene integration in the creeping bentgrass genome and normal transmission and stable expression of the transgene in the T1 generation. All independent transformation events carried one to three copies of the transgene, and a majority (60–65%) contained only a single copy of the foreign gene with no apparent rearrangements. We report here the successful use of Agrobacterium for the large-scale production of transgenic creeping bentgrass plants with a high frequency of a single-copy transgene insertion that exhibit stable inheritance patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2A–C
Fig. 3
Fig. 4A, B
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2,4-D::

2,4-Dichlorophenoxyacetic acid

bar::

Bialaphos resistance gene

GUS::

β-Glucuronidase

PPT::

Phosphinothricin

ubi::

Ubiquitin

References

  • Aldemita RR, Hodges TK (1996) Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta 199:612–617

    CAS  Google Scholar 

  • Basu C, Luo H, Kausch AP, Chandlee JM (2003) Promoter analysis in transient assays using a GUS reporter gene construct in creeping bentgrass (Agrostis palustris, L.). J Plant Physiol 160:1233–1239

    Google Scholar 

  • Chan M-T, Lee T-M, Chang H-H (1992) Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol 33:577–583

    CAS  Google Scholar 

  • Chan M-T, Chang H-H, Ho S-L, Tong W-F, Yu S-M (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α–amylase promoter/β-glucuronidase gene. Plant Mol Biol 22:491–506

    CAS  PubMed  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    CAS  Google Scholar 

  • De Buck S, Depicker A (2001) Disruption of their palindromic arrangement leads to selective loss of DNA methylation in inversely repeated gus transgenes in Arabidopsis. Mol Genet Genomics 265:1060–1068

    Article  PubMed  Google Scholar 

  • De Buck S, Van Montagu M, Depicker A (2001) Transgene silencing of invertedly repeated transgenes is released upon deletion of one of the transgenes involved. Plant Mol Biol 46:433–445

    PubMed  Google Scholar 

  • Enríquez-Obregón GA, Prieto-Samsónov DL, de la Riva GA, Pérez M, Selman-Housein G, Vázquez-Padrón RI (1999) Agrobacterium-mediated Japonica rice transformation: a procedure assisted by an antinecrotic treatment. Plant Cell Tissue Organ Cult 59:159–168

    Google Scholar 

  • Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    CAS  PubMed  Google Scholar 

  • Gould J, Devey M, Hasegawa O, Ulian EC, Peterson G, Smith RH (1991) Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot tip. Plant Physiol 95:426–434

    CAS  Google Scholar 

  • Hartley RW (1988) Barnase and barstar: expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol 202:913–915

    CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    CAS  Google Scholar 

  • Huq E, Hirayama L, Hossain MA, Hodges TK (1997) Characterization of a cDNA encoding a polyubiquitin gene in rice (accession no. U37687)(PRG97-004). Plant Physiol 113:305

    Article  PubMed  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Jin S, Komari T, Gordon MP, Nester EW (1987) Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J Bacteriol 169:4417–4425

    CAS  PubMed  Google Scholar 

  • Klöti A, He X, Potrykus I, Hohn T, Fütterer J (2002) Tissue-specific silencing of a transgene in rice. Proc Natl Acad Sci USA 99:10881–10886

    Article  PubMed  Google Scholar 

  • Komari T (1989) Transformation of callus cultures of nine plant species mediated by Agrobacterium. Plant Sci 60:223–229

    CAS  Google Scholar 

  • Lee J-Y, Aldemita RR, Hodges TK (1996) Isolation of a tapetum-specific gene and promoter from rice. Int Rice Res Newsl 21:2–3

    Google Scholar 

  • Li X-Q, Liu C-N, Ritchie SW, Peng J-Y, Gelvin SB, Hodges TK (1992) Factors influencing Agrobacterium-mediated transient expression of gusA in rice. Plant Mol Biol 20:1037–1048

    CAS  PubMed  Google Scholar 

  • Luo H, Van Coppenolle B, Seguin M, Boutry M (1995) Mitochondrial DNA polymorphism and phylogenetic relationship in Hevea brasiliensis. Mol Breed 1:51–63

    CAS  Google Scholar 

  • Luo H, Hu Q, Nelson K, Longo C, Kausch AP (2003) Controlling transgene escape in genetically modified grasses. In: Hopkins A, Wang ZY, Mian R, Sledge M, Barker R (eds) Molecular breeding of forage and turf. Kluwer, Dordrecht (in press)

  • Lupotto E, Reali A, Oassera S, Chan MT (1999) Maize elite inbred lines are susceptible to Agrobacterium tumefaciens-mediated transformation. Maydica 44:211–218

    Google Scholar 

  • McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Peterhans A, Datta SK, Datta K, Goodall GJ, Potrykus I, Paszkowski J (1990) Recognition efficiency of Dicotyledoneae-specific promoter and RNA processing signals in rice. Mol Gen Genet 222:361–368

    CAS  PubMed  Google Scholar 

  • Potrykus I (1990) Gene transfer to cereals: an assessment. Biotechnology 8:535–542

    CAS  Google Scholar 

  • Raineri DM, Bottino P, Gordon MP, Nester EW (1990) Agrobacterium-mediated transformation of rice (Oryza sativa L.). Biotechnology 8:33–38

    CAS  Google Scholar 

  • Ritchie SW, Liu CN, Sellmer JC, Kononowicz H, Hodges TK, Gelvin SB (1993) Agrobacterium tumefaciens-mediated expression of gusA in maize tissues. Transgenic Res 2:252–265

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schafer W, Gorz A, Kahl G (1987) T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327:529–532

    Article  Google Scholar 

  • Smith R, Hood EE (1995) Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35:301–309

    Google Scholar 

  • Tereda R, Shimamoto K (1990) Expression of CaMV 35S-GUS gene in transgenic rice plants. Mol Gen Genet 220:389–392

    CAS  Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    CAS  Google Scholar 

  • Wang Z, Hopkins A, Mian R (2001) Forage and turf grass biotechnology. Crit Rev Plant Sci 20:573–619

    Article  CAS  Google Scholar 

  • Yu TT, Skinner DZ, Liang GH, Trick HN, Huang B, Muthukrishnan S (2000) Agrobacterium-mediated transformation of creeping bentgrass using GFP as a reporter gene. Hereditas 133:229–233

    CAS  PubMed  Google Scholar 

  • Zhao Z-Y, Gu W, Cai T, Tagliani LA, Hondred D, Bond D, Krell S, Rudert ML, Bruce WB, Pierce DA (1998) Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet Coop Newsl 72:34–37

    Google Scholar 

  • Zhao Z-Y, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Luo.

Additional information

Communicated by J.M. Widholm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, H., Hu, Q., Nelson, K. et al. Agrobacterium tumefaciens-mediated creeping bentgrass (Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration. Plant Cell Rep 22, 645–652 (2004). https://doi.org/10.1007/s00299-003-0734-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-003-0734-2

Keywords

Navigation