Skip to main content
Log in

Agrobacterium-mediated transformation of protocorm-like bodies in Cymbidium

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Genetically transformed plants of Cymbidium were regenerated after cocultivating protocorm-like bodies (PLB) with Agrobacterium tumefaciens strain EHA101 (pIG121Hm) that harbored genes for β-glucuronidase (gus), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase II (nptII). PLB of three genotypes maintained in liquid new Dogashima medium (NDM), were subjected to transformation experiments. The PLB inoculated with Agrobacterium produced secondary PLB, 4 weeks after transfer onto 2.5 g L−1 gellan gum-solidified NDM containing 10 g L−1 sucrose, 20 mg L−1 hygromycin and 40 mg L−1 meropenem. Transformation efficiency was affected by genotype and the presence of acetosyringone during cocultivation. The highest transformation efficiency was obtained when PLB from the genotype L4 were infected and cocultivated with Agrobacterium on medium containing 100 μM acetosyringone. Transformation of the hygromycin-resistant plantlets regenerated from different sites of inoculated PLB was confirmed by histochemical GUS assay, PCR analysis and Southern blot hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AS:

Acetosyringone

GUS:

β-Glucuronidase

Hm:

Hygromycin

Km:

Kanamycin

ND:

New Dogashima

PLB:

Protocorm-like body

Reference

  • Anzai H, Ishii Y, Shichinohe M, Katsumata K, Nojiri C, Morikawa H, Tanaka M (1996) Transformation of Phalaenopsis by particle bombardment. Plant Tissue Cult Lett 13:265–271

    CAS  Google Scholar 

  • Ashby AM, Watson MD, Shaw CH (1987) A Ti-plasmid determined function is responsible for chemotaxis of Agrobacterium tumefaciens towards the plant wound product acetosyringone. FEMS Microbiol Lett 41:189–192

    Article  CAS  Google Scholar 

  • Belarmino MM, Mii M (2000) Agrobacterium-mediated genetic transformation of a Phalaenopsis orchid. Plant Cell Rep 19:435–442

    Article  CAS  Google Scholar 

  • Chai ML, Xu CJ, Senthil KK, Kim JY, Kim DH (2002) Stable transformation of protocorm-like bodies in Phalaenopsis orchid mediated by Agrobacterium tumefaciens. Sci Hortic 96:213–224

    Article  CAS  Google Scholar 

  • Chan YL, Lin KH, Sanjaya, Liao LJ, Chen WH, Chan MT (2005) Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack. Transgenic Res 14:279–288

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Hatano T, Niimi Y (2002) High efficiency of Agrobacterium-mediated rhizome transformation in Cymbidium. Lindleyana 17:130–134

    Google Scholar 

  • Chia TF, Hew CS, Loh CS, Lee YK (1988) Carbon/nitrogen ratio and greening and protocorm formation in orchid callus tissues. HortScience 23:599–601

    Google Scholar 

  • Chia TF, Chan YS, Chua NH (1994) The firefly luciferase gene as a non-invasive reporter for Dendrobium transformation. Plant J 6:441–446

    Article  CAS  Google Scholar 

  • Drake PMW, John A, Power JB, Davey MR (1997) Expression of the gusA gene in embryogenic cell lines of Sitka spruce following Agrobacterium-mediated transformation. J Exp Bot 48:151–155

    Article  CAS  Google Scholar 

  • Eady CC, Lister CE (1998) A comparison of four selective agents for use with Allium cepa L. immature embryos and immature embryo-derived cultures. Plant Cell Rep 18:117–121

    Article  CAS  Google Scholar 

  • Escudero J, Hohn B (1997) Transfer and integration of T-DNA without cell injury in the host plant. Plant Cell 9:2135–2142

    Article  PubMed  CAS  Google Scholar 

  • Hauptmann RM, Vasil V, Ozias-Akins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol 86:602–606

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–82

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T DNA. J Bacteriol 168:1291–1304

    PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Knapp JE, Kausch AP, Chandlee JM (2000) Transformation of three genera of orchid using the bar gene as a selectable marker. Plant Cell Rep 19:893–898

    Article  CAS  Google Scholar 

  • Kuehnle AR, Sugii N (1992) Transformation of Dendrobium orchid using particle bombardment of protocorms. Plant Cell Rep 11:484–488

    CAS  Google Scholar 

  • Liau CH, You SJ, Prasad V, Hsiao HH, Lu JC, Yang NS, Chan MT (2003a) Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Rep 21:993–998

    Article  PubMed  CAS  Google Scholar 

  • Liau CH, Lu JC, Prasad V, Hsiao HH, You SJ, Lee JT, Yang NS, Huang HE, Feng TY, Chen WH, Chan MT (2003b) The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Res 12:329–336

    Article  PubMed  CAS  Google Scholar 

  • Men S, Ming X, Liu R, Wei C, Li Y (2003) Agrobacterium-mediated genetic transformation of a Dendrobium orchid. Plant Cell Tissue Organ Cult 75:63–71

    Article  CAS  Google Scholar 

  • Mishiba K, Chin DP, Mii M (2005) Agrobacterium-mediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination. Plant Cell Rep 24:297–303

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nan GL, Tang CS, Kuehnle AR, Kado CI (1997) Dendrobium orchid contain an inducer of Agrobacterium virulence genes. Physiol Mol Plant Pathol 51:391–399

    Article  CAS  Google Scholar 

  • Ogawa Y, Mii M (2004) Screening for highly active β-lactam antibiotics against Agrobacterium tumefaciens. Arch Microbiol 181:331–336

    Article  PubMed  CAS  Google Scholar 

  • Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31:805–813

    CAS  Google Scholar 

  • Sjahril R, Chin DP, Khan RS, Yamamura S, Nakamura I, Amemiya Y, Mii M (2006) Transgenic Phalaenopsis plants with resistance to Erwinia carotovora produced by introducing wasabi defensin gene using Agrobacterium method. Plant Biotechnol 23:191–194

    CAS  Google Scholar 

  • Sjahril R, Mii M (2006) High-efficiency Agrobacterium-mediated transformation of Phalaenopsis using meropenem, a novel antibiotic to eliminate Agrobacterium. J Hortic Sci Biotechnol 81:458–464

    Google Scholar 

  • Song GQ, Sink KC (2004) Agrobacterium tumefaciens-mediated transformation of blueberry (Vaccinium corymbosum L.). Plant Cell Rep 23:475–484

    Article  PubMed  CAS  Google Scholar 

  • Tee CS, Maziah M, Tan CS, Abdullah MP (2003) Evaluation of different promoters driving the GFP reporter gene and selected target tissues for particle bombardment of Dendrobium Sonia 17. Plant Cell Rep 21:452–458

    PubMed  CAS  Google Scholar 

  • Tokuhara K, Mii M (1993) Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds. Plant Cell Rep 13:7–11

    Article  CAS  Google Scholar 

  • Tokuhara K, Mii M (2003) Highly-efficient somatic embryogenesis from cell suspension cultures of phalaenopsis orchids by adjusting carbohydrate sources. In Vitro Cell Dev Biol Plant 39:635–639

    Article  Google Scholar 

  • Yang J, Lee H, Shin DH, Oh SK, Seon JH, Paek KY, Han K (1999) Genetic transformation of Cymbidium orchid by particle bombardment. Plant Cell Rep 18:978–984

    Article  CAS  Google Scholar 

  • Yu H, Yang SH, Goh CJ (2001) Agrobacterium-mediated transformation of a Dendrobium orchid with the 1 knox gene DOH1. Plant Cell Rep 20:301–305

    Article  CAS  Google Scholar 

  • Yu ZH, Chen MY, Nie L, Lu HF, Ming XT, Zheng HH, Qu LJ, Chen ZL (1999) Recovery of transgenic orchid plants with hygromycin selection by particle bombardment to protocorms. Plant Cell Tissue Organ Cult 58:87–92

    Article  Google Scholar 

Download references

Acknowledgements

We Thank Hitaka Orchid Co., Ltd. for providing Cymbidium seeds and Mukoyama Orchids Co., Ltd. for providing PLB of RY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Mii.

Additional information

Communicated by K. K. Kamo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, D.P., Mishiba, Ki. & Mii, M. Agrobacterium-mediated transformation of protocorm-like bodies in Cymbidium . Plant Cell Rep 26, 735–743 (2007). https://doi.org/10.1007/s00299-006-0284-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0284-5

Keywords

Navigation