Skip to main content

Advertisement

Log in

Agrobacterium tumefaciens-mediated transformation of Withania somnifera (L.) Dunal: an important medicinal plant

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

This report describes Agrobacterium tumefaciens-mediated transformation of Withania somnifera—an important Indian medicinal plant. A. tumefaciens strain LBA4404, containing the binary vector pIG121Hm was used for transformation, along with the gusA reporter gene with intron under the transcriptional control of the Cauliflower Mosaic Virus (CaMV) 35S promoter. The leaf segments from two-and-a-half-month-old green house-grown seedlings were more efficient in transformation, as compared to those from the in vitro-grown shoots. Second expanded leaf from the shoot tip gave the highest transient transformation efficiency. Selection of transgenic shoots was done in the presence of 50 mg l−1 kanamycin. Polymerase chain reaction analysis of T0 transgenic plants showed the presence of gusA and nptII genes. The expression of these transgenes in T1 progeny was confirmed by RT-PCR. The integration of gusA gene was confirmed by Southern blot analysis. The transformation efficiency was found to be 1.67%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AS:

Acetosyringone

BA:

Benzyladenine

CCM:

Cocultivation medium

GH-grown:

Green house-grown

gusA :

β-Glucuronidase

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

MIC:

Minimal inhibitory concentration

MS medium:

Murashige and Skoog (1962) medium

NAA:

α-Naphthaleneacetic acid

nptII :

Neomycin phosphotransferase

SIM:

Shoot induction medium

TTE:

Transient transformation efficiency

X-Gluc:

5-Bromo-4-chloro-3-indolyl-β-d-glucuronide

References

  • Bandyopadhyay M, Jha S, David T (2007) Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep 26:599–609

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya SK, Satyan KS, Ghosal S (1997) Antioxidant activity of glycol withanolides from Withania somnifera. Indian J Exp Biol 35:236–239

    CAS  PubMed  Google Scholar 

  • Bhattacharya A, Ramanathan M, Ghosal S, Bhattacharya SK (2000) Effect of Withania somnifera glycowithanolides on iron-induced hepatotoxicity in rats. Phytother Res 14:568–570

    Article  CAS  PubMed  Google Scholar 

  • Boase MR, Bradley JM, Borst NK (1998) An improved method for transformation of regal pelargonium (Pelargonium × domesticum Dubonnet) by Agrobacterium tumefaciens. Plant Sci 139:59–69

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chaturvedi HC, Sharma M (1989) In vitro production of cloned plants of jojoba (Simmondsia chinensis (Link) Schneider) through shoot proliferation in long-term culture. Plant Sci 63:199–207

    Article  CAS  Google Scholar 

  • Chaudhury K, Das S, Bandhyopadhyay M, Zalar A, Kollmann A, Jha S, Tepfer D (2009) Transgenic mimicry of pathogen attack stimulates growth and secondary metabolite accumulation. Trans Res 18:121–134

    Article  Google Scholar 

  • Ghosal S, Kaur R, Bhattacharya S (1988) Chemistry and bioactivity of sitoindosides IX and X. Planta Med 54:561

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Galéra S, Pelacho AM, Gene A (2007) The genetic manipulation of medicinal and aromatic plants. Plant Cell Rep 26:1689–1715

    Article  PubMed  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bact 168:1291–1301

    CAS  PubMed  Google Scholar 

  • Jayaprakasam B, Nair MG (2003) Cyclooxygenase-2 enzyme inhibitory withanolides from Withania somnifera leaves. Tetrahedron 59:841–849

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Joubert P, Beaupère D, Lelièvre P, Wadouachi A, Sangwan RS, Sangwan-Norreel BS (2002) Effects of phenolic compounds on Agrobacterium vir genes and gene transfer induction-a plausible molecular mechanism of phenol binding protein activation. Plant Sci 162:733–743

    Article  CAS  Google Scholar 

  • Khan MY, Aliabbas S, Kumar V, Rajkumar S (2009) Recent advances in medicinal plant biotechnology. Indian J Biotechnol 8:9–22

    CAS  Google Scholar 

  • Kosugi S, Ohashi Y, Nakajima K, Arai Y (1990) An improved assay for β-glucuronidase in transformed cells: methanol almost completely suppresses a putative endogenous β-glucuronidase activity. Plant Sci 70:133–140

    Article  CAS  Google Scholar 

  • Kulkarni AA, Thengane SR, Krishnamurthy KV (1996) Direct in vitro regeneration of leaf explants of Withania somnifera (L.) Dunal. Plant Sci 119:163–168

    Article  CAS  Google Scholar 

  • Kulkarni AA, Thengane SR, Krishnamurthy KV (2000) Direct shoot regeneration from node, internode, hypocotyls and embryo explants of Withania somnifera. Plant Cell Tissue Organ Cult 62:181–185

    Article  Google Scholar 

  • Kumar V, Kotamballi N, Chidambara M, Bhamid S, Sudha CG, Ravishankar GA (2005) Genetically modified hairy roots of Withania somnifera Dunal: a potent source of rejuvenating principles. Rejuvenation Res 8:37–45

    Article  CAS  PubMed  Google Scholar 

  • Lichtenstein C, Draper J (1986) Genetic engineering of plants. In: Glover DM (ed) DNA cloning: a practical approach. IRL Press, Oxford/Washington, pp 11–67

    Google Scholar 

  • Lièvre K, Tran TL, Doerper S, Hehn A, Lacoste P, Thomasset B, Bourgaud F, Gontier E (2009) Agrobacterium-mediated transformation of Ruta graveolens L. Methods Mol Biol 547:235–248

    Article  PubMed  Google Scholar 

  • Matsuda H, Murakami T, Kishi A, Yoshikawa M (2001) Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorg Med Chem 9:1499–1507

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Ghosh B, Jha S (2000) Establishment of forskolin yielding transformed cell suspension cultures of Coleus forskohlii as controlled by different factors. J Biotechnol 76:73–81

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy HN, Dijkstra C, Anthony P, White DA, Davey MR, Power JB, Hahn EJ, Paek KY (2008) Establishment of Withania somnifera hairy root cultures for the production of Withanolide A. J Integrative Plant Biol 50:975–981

    Article  CAS  Google Scholar 

  • Niu X, Lin K, Hasegawa PM, Bressan RA, Weller SC (1998) Transgenic peppermint (Mentha piperita L.) plants obtained by cocultivation with Agrobacterium tumefaciens. Plant Cell Rep 17:165–171

    Article  CAS  Google Scholar 

  • Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31:805–813

    CAS  Google Scholar 

  • Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Mol Biol Rev 1:12–20

    Google Scholar 

  • Park S-U, Chae Y-A, Facchini PJ (2003) Genetic transformation of the figwort. Scrophularia bueregeriana Miq., an Oriental medicinal plant. Plant Cell Rep 21:1194–1198

    Article  CAS  PubMed  Google Scholar 

  • Rani G, Virk GS, Nagpal A (2003) Callus induction and plantlet regeneration in Withania somnifera (L.) Dunal. In Vitro Cell Dev Biol Plant 39:468–474

    Google Scholar 

  • Ray S, Jha S (1999) Withanolide synthesis in cultures of Withania somnifera transformed with Agrobacterium tumefaciens. Plant Sci 146:1–7

    Article  CAS  Google Scholar 

  • Ray S, Ghosh B, Jha S (1996) Withanolide production by root cultures of Withania somnifera transformed with Agrobacterium tumefaciens. Planta Med 62:571–573

    Article  CAS  PubMed  Google Scholar 

  • Rommens CM (2006) Kanamycin resistance in plants: an unexpected trait controlled by a potentially multifaceted gene. Trends in Plant Sci 11:317–319

    Article  CAS  Google Scholar 

  • Sales E, Segura J, Arrillaga I (2003) Agrobacterium tumefaciens-mediated genetic transformation of the cardenolide-producing plant Digitalis minor L. Planta Med 69:143–147

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Takamizo T (2006) Agrobacterium tumefaciens-mediated transformation of forage-type perennial ryegrass (Lolium perenne L.). Grassland Sci 52:95–98

    Article  CAS  Google Scholar 

  • Sharma KK, Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159:7–19

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui NA, Bari MA, Shahnewaz S, Rahman MH, Hasn MR, Khan MSI, Islam MS (2004) Plant regeneration of Withania somnifera (L.) Dunal (Ashwagandha) from nodal segments derived callus an endangered medicinal plant in Bangladesh. J Biol Sci 4:219–223

    Article  Google Scholar 

  • Spencer A, Hamill JD, Rhodes MJC (1990) Production of terpenes by differential shoot cultures of Mentha citrate transformation with Agrobacterium tumefaciens T37. Plant Cell Rep 8:601–604

    Article  CAS  Google Scholar 

  • Sunandakumari C, Zhang CL, Martin KP, Slater A, Madhusoodanan PV (2005) Effect of auxins on indirect in vitro morphogenesis and expression of gusA transgene in a lectinaceous medicinal plant. Euphorbia nivulia Buch.-Ham. In Vitro Cell Dev Biol Plant 41:695–699

    Article  CAS  Google Scholar 

  • Tang W (2003) Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation. Plant Cell Rep 21:555–562

    CAS  PubMed  Google Scholar 

  • Van Altvorst AC, Riksen T, Koehorst H, Dons HJM (1995) Transgenic carnations obtained by Agrobacterium tumefaciens. Transgenic Res 4:105–113

    Article  Google Scholar 

  • Vergauwe A, Van Geldre E, Inzé D, Van Montagu M, Van den Eeckhout E (1998) Factors influencing Agrobacterium tumefaciens-mediated transformation of Artemisia annua L. Plant Cell Rep 18:105–110

    Article  CAS  Google Scholar 

  • Wang HM, To KY (2004) Agrobacterium-mediated transformation in the high-value medicinal plant Echinacea purpurea. Plant Sci 166:1087–1096

    Article  CAS  Google Scholar 

  • Wang M, Huang LQ, Li MM (2008) Progress in research and application of gene engineering on medicinal plants. Zhongguo Zhong Yao Za Zhi 33:1365–1371 Review Chinese

    PubMed  Google Scholar 

  • Wei XP, Gou XP, Yuan T, Russell SD (2006) A highly efficient in vitro plant regeneration system and Agrobacterium-mediated transformation in Plumbago zeylanica. Plant Cell Rep 25(6):513–521

    Article  CAS  PubMed  Google Scholar 

  • Wydro M, Kozubek E, Lehmann P (2006) Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochim Polonica 53:289–298

    CAS  Google Scholar 

  • Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C, Komatsu K (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull 50:760–765

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Council of Scientific and Industrial Research, New Delhi, Govt. of India, for providing the financial support to carry out this work under NMITLI scheme and Network Project (NWP-08). RT is thankful to the DST for J.C.Bose Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Tuli.

Additional information

Communicated by P. Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 920 kb)

Supplementary material 2 (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, V., Misra, P., Chaturvedi, P. et al. Agrobacterium tumefaciens-mediated transformation of Withania somnifera (L.) Dunal: an important medicinal plant. Plant Cell Rep 29, 133–141 (2010). https://doi.org/10.1007/s00299-009-0805-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0805-0

Keywords

Navigation