Skip to main content
Log in

Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A new Agrobacterium-mediated transformation system was developed for finger millet using shoot apex explants. The Agrobacterium strain LBA4404 harboring binary vector pCAMBIA1301, which contained hygromycin phosphotransferase (hptII) as selectable marker gene and β-glucuronidase (GUS) as reporter gene, was used for optimization of transformation conditions. Two finger millet genotypes, GPU 45 and CO 14, were used in this study. The optimal conditions for the Agrobacterium-mediated transformation of finger millet were found to be the co-cultivation of explants obtained on the 16th day after callus induction (DACI), exposure of explants for 30 min to agrobacterial inoculum and 3 days of co-cultivation on filter paper placed on medium supplemented with 100 μM acetosyringone (AS). Addition of 100 μM l-cysteine in the selection medium enhanced the frequency of transformation and transgenic plant recovery. Both finger millet genotypes were transformed by Agrobacterium. A frequency of 19% transient expression with 3.8% stable transformation was achieved in genotype GPU 45 using optimal conditions. Five stably transformed plants were fully characterized by Southern blot analysis. A segregation analysis was also performed in four R1 progenies, which showed normal Mendelian pattern of transgene segregation. The inheritance of transgenes in R1 progenies was also confirmed by Southern blot analysis. This is the first report on Agrobacterium-mediated transformation of finger millet. This study underpins the introduction of numerous agronomically important genes into the genome of finger millet in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AS:

Acetosyringone

DACI:

Days after callus induction

2,4-D:

2,4 Dichlorophenoxy acetic acid

Kn:

Kinetin

MS:

Murashige and Skoog

SEM:

Somatic embryogenesis medium

REM:

Regeneration medium

TDZ:

Thidiazuron

References

  • Arockiasamy S, Ignacimuthu S (2007) Regeneration of transgenic plants from two indica rice (Oryza sativa L.) cultivars using shoot apex explants. Plant Cell Rep 26:1745–1753

    Article  PubMed  CAS  Google Scholar 

  • Arockiasamy S, Prakash S, Ignacimuthu S (2001) High regenerative nature of Paspalum scrobiculatum L., an important millet crop. Curr Sci 80:496–498

    Google Scholar 

  • Banerjee AK, Agrawal DC, Nalawade SM, Krishnamurthy KV (2002) Transient expression of β-glucuronidase in embryo axes of cotton by Agrobacterium and particle bombardment methods. Biol Plant 45:359–365

    Article  CAS  Google Scholar 

  • Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA (2008) High-throughput Agrobacterium-mediated barley transformation. Plant Methods 4:22

    Article  PubMed  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2008) Efficient somatic embryogenesis and plant regeneration from shoot apex explants of different Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cell Dev Biol Plant 44:427–435

    Article  CAS  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2009) Genetic engineering of millets: current status and future prospects. Biotechnol Lett 31:779–788

    Article  PubMed  CAS  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2010) Effects of cytokinins, carbohydrates and amino acids on induction and maturation of somatic embryos in kodo millet (Paspalum scorbiculatum Linn.). Plant Cell Tissue Organ Cult 102:153–162

    Article  CAS  Google Scholar 

  • Cheng M, Fry JE (2000) An improved efficient Agrobacterium-mediated plant transformation method. Int Patent Publ WO 00/34491

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Cheng M, Hu T, Layton J, Liu CN, Fry JE (2003) Desiccation of plant tissues post- Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell Dev Biol Plant 39:595–604

    Article  CAS  Google Scholar 

  • Cheng M, Lowe BA, Spencer TM, Ye X, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In vitro Cell Dev Biol Plant 40:31–45

    Article  Google Scholar 

  • Dan Y (2008) Biological functions of antioxidants in plant transformation. In Vitro Cell Dev Biol Plant 44:149–161

    Article  CAS  Google Scholar 

  • Das D, Reddy M, Upadhyaya K, Sopory S (2002) An efficient leaf-disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Rep 20:999–1005

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Enriquez-Obregon GA, Vazquez-Padron RI, Prieto-Samsonov DL, de-a-Riva GA, Selman-Housein G (1998) Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206:20–27

    Article  CAS  Google Scholar 

  • Enríquez-Obregón GA, Prieto-Samsónov DL, Riva GA, de-la-Pérez M, Selman-Housein G, Vázquez-Padrón RI (1999) Agrobacterium-mediated japonica rice transformation: a procedure assisted by an antinecrotic treatment. Plant Cell Tissue Organ Cult 59:159–168

    Article  Google Scholar 

  • Enríquez-Obregón GA, Trujillo LE, Menéndez C, Vazquez RI, Tiel K, Dafhnis F, Arrieta J, Selman G, Hernández L (2000) Sugarcane (Saccharum hybrid) genetic transformation mediated by Agrobacterium tumefaciens: production of transgenic plants expressing proteins with agronomic and industrial value. Plant genetic engineering: towards the third millennium. In: Proceedings of the International Symposium on Plant Genetic Engineering, Havana, Cuba, 6–10 December 76–81

  • Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, Raghuvanshi S, Tyagi AK (2001) Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotechnol 18:275–282

    Article  CAS  Google Scholar 

  • Gustavo AR, Gonzalez-Cabrera J, Vazquez-Padron R, Ayra-Pardo C (1998) Agrobacterium tumefaciens: a natural tool for plant transformation. Electronic J Biotechnol 1:118–133

    Article  Google Scholar 

  • Hansen G (2000) Evidence for Agrobacterium-induced apoptosis in maize cells. Mol Plant-Microb Interact 13:649–657

    Article  CAS  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  PubMed  CAS  Google Scholar 

  • Hu T, Metz S, Chay C, Zhou HP, Biest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F, Fry JE (2003) Agrobacterium-mediated large scale transformation of wheat (Triticum aestivum L.). Plant Cell Rep 21:1010–1019

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Wei Z (2005) Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tissue Organ Cult 83:187–200

    Article  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:390–3907

    Google Scholar 

  • Kuta DD, Tripathi L (2005) Agrobacterium-induced hypersensitive necrotic reaction in plant cells: a resistance response against Agrobacterium-mediated DNA transfer. Afr J Biotechnol 4:752–757

    CAS  Google Scholar 

  • Latha MA, Dasvantha Reddy V, Madavi latha A, Venkateswara Rao K (2005) Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci 169:657–667

    Article  CAS  Google Scholar 

  • Latha MA, Rao KV, Reddy TP, Reddy VD (2006) Development of transgenic pearl millet (Pennisetum glaucum (L.) R. Br.) plants resistant to downy mildew. Plant Cell Rep 25:927–935

    Article  PubMed  CAS  Google Scholar 

  • Magonja MA, Lenne JM, Manyasa E, Sreenivasaprasad S (2007) Finger millet blast management in East Africa. Creating opportunities for improving production and utilization of finger millet. In: Proceedings of the First International Finger Millet Stakeholder Workshop, Projects R8030 & R8445 UK Department for International Development-Crop Protection Programme. International Crops Research Institute for the Semi-Arid Tropics. ISBN: 978–92–9066–505–2

  • Mohan KL, Krishnamurthy KV (2003) Plant regeneration from decapitated mature embryo axis and Agrobacterium-mediated genetic transformation of pigeon pea. Biol Plant 46:519–527

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Olhoft PM, Somers DA (2001) l-cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20:706–711

    Article  CAS  Google Scholar 

  • Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735

    PubMed  CAS  Google Scholar 

  • Rashid H, Yokoi S, Toriyama K, Hinata K (1996) Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Rep 15:727–730

    Article  CAS  Google Scholar 

  • Sambrook J, Fritschi EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Shrawat AK (2007) Genetic transformation of cereals mediated by Agrobacterium: potential and problems. ISB News Report. February 2007

  • Shrawat AK, Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603

    Article  PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski PC (1985) Identification of the signal molecules produced by wounded plant cell that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Sticklen MB, Orabya HF (2005) Shoot apical meristem: a sustainable explant for genetic transformation of cereal crops. In Vitro Cell Dev Biol Plant 41:187–200

    Article  CAS  Google Scholar 

  • Veluthambi K, Gupta AK, Sharma A (2003) The current status of plant transformation technologies. Curr Sci 84:368–380

    CAS  Google Scholar 

  • Wu H, Sparks C, Amoah A, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    PubMed  CAS  Google Scholar 

  • Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  PubMed  CAS  Google Scholar 

  • Zheng SJ, Khrustaleva L, Henken B, Jacobsen E, Kik C, Krens FA (2001) Agrobacterium tumefaciens-mediated transformation of Allium cepa L.: the production of transgenic onions and shallots. Mol Breed 7:101–115

    Article  CAS  Google Scholar 

  • Zheng QS, Ju B, Liang LK, Xiao XH (2005) Effects of antioxidants on the plant regeneration and GUS expressive frequency of peanut (Arachis hypogaea) explants by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 811:83–89

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ignacimuthu.

Additional information

Communicated by P. Ozias-Akins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antony Ceasar, S., Ignacimuthu, S. Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants. Plant Cell Rep 30, 1759–1770 (2011). https://doi.org/10.1007/s00299-011-1084-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1084-0

Keywords

Navigation