Skip to main content
Log in

Ectopic overexpression of WsSGTL1, a sterol glucosyltransferase gene in Withania somnifera, promotes growth, enhances glycowithanolide and provides tolerance to abiotic and biotic stresses

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Overexpression of sterol glycosyltransferase (SGTL1) gene of Withania somnifera showing its involvement in glycosylation of withanolide that leads to enhanced growth and tolerance to biotic and abiotic stresses.

Abstract

Withania somnifera is widely used in Ayurvedic medicines for over 3000 years due to its therapeutic properties. It contains a variety of glycosylated steroids called withanosides that possess neuroregenerative, adaptogenic, anticonvulsant, immunomodulatory and antioxidant activities. The WsSGTL1 gene specific for 3β-hydroxy position has a catalytic specificity to glycosylate withanolide and sterols. Glycosylation not only stabilizes the products but also alters their physiological activities and governs intracellular distribution. To understand the functional significance and potential of WsSGTL1 gene, transgenics of W. somnifera were generated using Agrobacterium tumefaciens-mediated transformation. Stable integration and overexpression of WsSGTL1 gene were confirmed by Southern blot analysis followed by quantitative real-time PCR. The WsGTL1 transgenic plants displayed number of alterations at phenotypic and metabolic level in comparison to wild-type plants which include: (1) early and enhanced growth with leaf expansion and increase in number of stomata; (2) increased production of glycowithanolide (majorly withanoside V) and campesterol, stigmasterol and sitosterol in glycosylated forms with reduced accumulation of withanolides (withaferin A, withanolide A and withanone); (3) tolerance towards biotic stress (100 % mortality of Spodoptera litura), improved survival capacity under abiotic stress (cold stress) and; (4) enhanced recovery capacity after cold stress, as indicated by better photosynthesis performance, chlorophyll, anthocyanin content and better quenching regulation of PSI and PSII. Our data demonstrate overexpression of WsSGTL1 gene which is responsible for increase in glycosylated withanolide and sterols, and confers better growth and tolerance to both biotic and abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams-DB Adams WWIII (1996) Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta 198:460–470

    Article  Google Scholar 

  • Akhtar N, Gupta P, Sangwan NS, Sangwan RS, Trivedi PK (2013) Cloning and functional characterization of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Withania somnifera: an important medicinal plant. Protoplasma 250:613–622

    Article  PubMed  CAS  Google Scholar 

  • Ascher KRS, Eliyahu M, Glotter E, Kirson I, Abraham A (1984) Distribution of the chemotypes of Withania somnifera in some areas of Israel: feeding studies with Spodoptera littoralis larvae and chemical examination of withanolide content. Phytoparasitica 12:147–155

    Article  CAS  Google Scholar 

  • Bhat WW, Lattoo SK, Razdan S, Dhar N, Dhar RS, Khan S, Vishwakarma RA (2012) Molecular cloning bacterial expression and promoter analysis of squalene synthase from Withania somnifera (L.) Dunal. Gene 499:25–36

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya SK, Satyan KS, Ghosal S (1997) Antioxidant activity of glycowithanolides from Withania somnifera. Indian J Exp Biol 35:236–239

    PubMed  CAS  Google Scholar 

  • Bowles D, Lim EK, Poppenberger B, Vaistij FE (2006) Glycosyltransferases of lipophilic small molecules. Ann Rev Plant Biol 57:567–597

    Article  CAS  Google Scholar 

  • Chatterjee S, Srivastava S, Khalid A, Singh N, Sangwan RS, Sidhu OP, Roy R, Khetrapal CL, Tuli R (2010) Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts. Phytochem 71:1085–1094

    Article  CAS  Google Scholar 

  • Chaturvedi P, Mishra P, Tuli R (2011) Sterol glycosyltransferases—the enzymes that modify sterols. Appl Biochem Biotechnol 165:47–68

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi P, Mishra M, Akhtar N, Gupta P, Mishra P, Tuli R (2012) Sterol glycosyltransferases-identification of members of gene family and their role in stress in Withania somnifera. Mol Biol Rep 39:9755–9764

    Article  PubMed  CAS  Google Scholar 

  • Chen LX, He H, Qiu F (2011) Natural withanolides: an overview. Nat Prod Rep 28:705–740

    Article  PubMed  CAS  Google Scholar 

  • Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P (2002) Downregulation of a pathogen-responsive tobacco UDP-Glc:phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell 14:1093–1107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dhar N, Rana S, Bhat WW, Razdan S, Pandith SA, Khan S, Lattoo SK (2013) Dynamics of with anolide biosynthesis in relation to temporal expression pattern of metabolic genes in Withania somnifera (L.) Dunal: a comparative study in two morpho-chemovariants. Mol Biol Rep 40:7007–7016

    Article  PubMed  CAS  Google Scholar 

  • Dhar N, Rana S, Razdan S, Bhat WW, Hussain A, Dhar RS, Vaishnavi S, Hamid A, Vishwakarma R, Lattoo SK (2014) Cloning and functional characterization of three branch point Oxidosqualene cyclases from Withania somnifera (L.) Dunal. J Biol Chem 289(24):17249–17267

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem 19:11–15

    Google Scholar 

  • Eldin HHN, Andersen TG, Burow M, Madsen SR, Jørgensen ME, Olsen CE, Dreyer I, Hedrich R, Geiger D, Halkier BA (2012) NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488:531–534. doi:10.1038/nature11285

    Article  Google Scholar 

  • Flanders KL, Hawkes JG, Radcliffe EB, Lauer FI (1992) Insect resistance in potato: sources, evolutionary relationships, morphological and chemical defenses, and ecogeographical associations. Euphytica 61:83–111

    Article  CAS  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Ann Rev Plant Biol 54:137–164

    Article  CAS  Google Scholar 

  • Gachon CMM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10(542):549

    Google Scholar 

  • Ganzera M, Choudhary MI, Khan IA (2003) Quantitative HPLC analysis of withanolides in Withania somnifera. Fitoterapia 74:68–76

    Article  PubMed  CAS  Google Scholar 

  • Gaur R, Kumar K (2010) Insect growth regulating effects of Withania somnifera in polyphagous pest, Spodoptera litura. Phytoparasitica 38:237–241

    Article  Google Scholar 

  • Gupta P, Akhtar N, Tewari SK, Sangwan RS, Trivedi PK (2011) Differential expression of farnesyl diphosphate synthase gene from Withania somnifera in different chemotypes and in response to elicitors. Plant Growth Regul 65:93–100

    Article  CAS  Google Scholar 

  • Gupta P, Goel R, Pathak S, Srivastava A, Singh SP, Sangwan RS, Asif MH, Trivedi PK (2013) De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis. PLoS ONE 8:e62714

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hadapad A, Chaudhari CS, Kulye M, Chaudele AG, Salunkhe GN (2001) Studies on Chitin synthesis inhibitors against gram pod borer, Helicoverpa armigera (Hub). J Natcon 13(2):137–140

    Google Scholar 

  • Huang W, Yang SJ, Zhang SB, Zhang JL, Cao KF (2012) Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta 235:819–828

    Article  PubMed  CAS  Google Scholar 

  • Ikeda T, Tsumagari H, Honbu T, Nohara T (2003) Cytotoxic activity of steroidal glycosides from Solanum plants. Biol Pharm Bull 26:1198–1201

    Article  PubMed  CAS  Google Scholar 

  • Jayaprakasam B, Nair MG (2003) Cyclooxygenase-2 enzyme inhibitory withanolides from Withania somnifera leaves. Tetrahedron 59:841–849

    Article  CAS  Google Scholar 

  • Jones P, Messner B, Nakajima J-I, Schäffner A, Saito K (2003) UGT73C6 and UGT78D1glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J Biol Chem 278:43910–43918

    Article  PubMed  CAS  Google Scholar 

  • Kandagal AS, Khetagoudar MC (2012) Study on larvicidal activity of weed extracts against Spodoptera litura. J Env Biol 34:253–257

    Google Scholar 

  • Klughammer C, Schreiber U (2008) Saturation pulse method for assessment of energy conversion in PSI. PAM Application Notes 1:11–14

    Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  PubMed  CAS  Google Scholar 

  • Kumar B, Singh R, Mahal MS (1993) Development of Spodoptera litura Fabr. on cotton and colocasia. Pest Manag Econ Zool 1:76–79

    Google Scholar 

  • Kumar V, Sharma A, Prasad BCN, Gururaj HB, Giridhar P, Ravishankar GA (2007) Direct shoot bud induction and plant regeneration in Capsicum frutescens Mill: influence of polyamines and polarity. Acta Physiol Plant 29:11–18

    Article  CAS  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions and mechanisms. Annu Rev Biochem 77:521–555

    Article  PubMed  CAS  Google Scholar 

  • Laranjeira S, Amorim-SilvaV Esteban A, Arro´ M, Ferrer A et al (2015) Arabidopsis Squalene Epoxidase 3 (SQE3) complements sqe1 and is important for embryo development and bulk squalene epoxidase activity. Mol Plant 8(7):1090–1102

    Article  PubMed  CAS  Google Scholar 

  • Lerouxel O, Mouille G, Andème-Onzighi C, Bruyant MP, Séveno M, Loutelier-Bourhis C, Driouich A, Höfte H, Lerouge P (2005) Mutants in defective glycosylation, an Arabidopsis homolog of an oligosaccharyltransferase complex subunit, show protein underglycosylation and defects in cell differentiation and growth. The Plant J 42:455–468

    Article  PubMed  CAS  Google Scholar 

  • Lim EK, Bowles DJ (2004) A class of plant glycosyltransferases involved in cellular homeostasis. EMBO J 23:2915–2922

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Madina BR, Sharma LK, Chaturvedi P, Sangwan RS, Tuli R (2007a) Purification and physico-kinetic characterization of 3β-hydroxy specific sterol glucosyltransferase from Withania somnifera (L) and its stress response. Biochem Biophys Acta 1774:392–402

    PubMed  CAS  Google Scholar 

  • Madina BR, Sharma LK, Chaturvedi P, Sangwan RS, Tuli R (2007b) Purification and characterization of a novel glucosyltransferase specific to 27beta-hydroxy steroidal lactones from Withania somnifera and its role in stress responses. Biochem Biophys Acta 1774:1199–1207

    PubMed  CAS  Google Scholar 

  • Matsuda H, Murakami T, Kishi A, Yoshikawa M (2001) Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorg Med Chem 9:1499–1507

    Article  PubMed  CAS  Google Scholar 

  • Mishra MK, Chaturvedi P, Singh R, Singh G, Sharma LK, Pandey V, Kumari N, Misra P (2013) Overexpression of WsSGTL1 gene of Withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis plants. PLoS One 8:e63064. doi:10.1371/journal.pone.0063064

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miyazawa S-I, Livingston NJ, Turpin DH (2006) Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa × P. deltoides). J Expl Bot 57:373–380

    Article  CAS  Google Scholar 

  • Mizutani M, Ohta D (2010) Diversification of P450 genes during land plant evolution. Annu Rev Plant Biol 61:291–315

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murray JR, Hackett WP (1991) Difydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiol 97:343–351

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nicotra AB, Hofmann M, Siebke K, Ball MC (2003) Spatial patterning of pigmentation in evergreen leaves in response to freezing stress. Plant Cell Env 26:1893–1904

    Article  CAS  Google Scholar 

  • Niranjan A, Barthwal J, Lehri A, Singh DP, Govindrajan R, Rawat AKS, Amla DV (2009) Development and validation of an HPLC–UV–MS–MS method for identification and quantification of polyphenols in Artemisia pallens L. Acta Chromatographica 21:105–116

    Article  CAS  Google Scholar 

  • O’Donnell PJ, Truesdale MR, Dorans A, Roberts MR, Bowles DJ (1998) A novel tomato gene that rapidly responds to wound and pathogen related signals. The plant J 14:137–142

    Article  PubMed  Google Scholar 

  • Oquist G, Huner N (2003) Photosynthesis of over wintering evergreen plants. Ann Rev Plant Biol 54:329–355

    Article  Google Scholar 

  • Pandey V, Misra P, Chaturvedi P, Mishra MK, Trivedi PK, Tuli R (2010) Agrobacterium tumefaciens mediated transformation of Withania somnifera (L.) Dunal: an important medicinal plant. Pant Cell Rep 29:133–141

    Article  CAS  Google Scholar 

  • Pandey V, Atri N, Chandrashekhar K, Mishra MK, Trivedi PK, Misra P (2014) WsSGTL1 gene from Withania somnifera, modulates glycosylation profile, antioxidant system and confers biotic and salt stress tolerance in transgenic tobacco. Planta. doi:10.1007/s00425-014-2046-x

    Google Scholar 

  • Paulraj MG (2001) Integration of intercrops and plant product on chosen groundnut pests management. Ph.D.thesis, St.Joseph’s College(Autonomous), Bharathidasan University, Trichy, Tamilnadu, India

  • Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glössl J, Luschnig C, Adam G (2003) Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem 278:47905–47914

    Article  PubMed  CAS  Google Scholar 

  • Qin CY, Gan J, Wang W, Zhang H, Liu Y, Wu P (2013) OsDGL1 a homolog of an oligosaccharyltransferase complex subunit, is involved in N-glycosylation and root development in rice. Plant Cell Physiol 54:129–137

    Article  PubMed  CAS  Google Scholar 

  • Rana S, Lattoo SK, Dhar N, Razdan S, Bhat WW, Dhar RS, Vishwakarma R (2013) NADPH-cytochrome P450 reductase: molecular cloning and functional characterization of two paralogs from Withania somnifera (L.) Dunal. PLoS ONE 8:e57068

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ranjan S, Singh R, Singh M, Pathre UV, Shirke PA (2014) Characterizing photoinhibition and photosynthesis in juvenile-red versus mature green leaves of Jatropha curcas L. Plant Physiol Biochem 79:48–59

    Article  PubMed  CAS  Google Scholar 

  • Razdan S, Bhat WW, Rana S, Dhar RS, Vishwakarma RA (2013) Molecular characterization and promoter analysis of squalene epoxidase gene from Withania somnifera (L.) Dunal. Mol Biol Rep 40:905–916

    Article  PubMed  CAS  Google Scholar 

  • Roberts MR, Warner SAJ, Darby R, Lim E-K, Draper J, Bowles DJ (1999) Differential regulation of a glucosyl transferase gene homologue during defence responses in tobacco. J Exp Bot 50:407–410

    Article  CAS  Google Scholar 

  • Sadek MM (2003) Antifeedant and toxic activity of Adhatoda vasica leaf extract against Spodoptera littoralis(Lep., Noctuidae). J App Entomol 127:396–404

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, Ed 3 Vol 2. Cold Spring Harbor: Cold Spring Harbor Laboratory Press

  • Sangwan RS, Chaurasiya ND, Misra LN, Lal P, Uniyal GC, Sharma R, Sangwan NS, Suri KA, Qazi GN, Tuli R (2004) Phytochemical variability in commercial herbal products and preparations of Withania somnifera (Ashwagandha). Curr Sci 86:461–465

    CAS  Google Scholar 

  • Sangwan RS, Chaurasiya ND, Lal P, Misra L, Tuli R (2008) Root contained withanolide A is inherently de novo synthesized within roots in ashwagandha (Withania somnifera). Physiol Plant 133:278–287

    Article  PubMed  CAS  Google Scholar 

  • Schuler I, Milon A, Nakatani Y, Ourisson G, Albrecht AM, Benveniste P, Hartman MA (1991) Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidyl choline bilayers. Proc Natl Acad Sci USA 88:6926–6930

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sharma AK, Seth RK (2005) Combined effect of gamma radiation and azadirachtin on the growth and development of Spodoptera litura (Fabricius). Curr Sci 89:1027–1031

    Google Scholar 

  • Sharma LK, Madina BR, Chaturvedi P, Sangwan RS, Tuli R (2007) Molecular cloning and characterization of one member of 3β-hydroxy sterol glucosyltransferase gene family in Withania somnifera. Arch Biochim Biophys 460:48–55

    Article  CAS  Google Scholar 

  • Sharma V, Sharma S, Pracheta Paliwal R (2011) Withania somnifera: a rejuvenating ayurvedic medicinal herb for the treatment of various human ailments. Int J Pharm Tech Res 3:187–192

    Google Scholar 

  • Singh S, Vishwakarma RK, Kumar RJ, Sonawane PD, Ruby Khan BM (2013a) Functional characterization of a flavonoid glycosyltransferase gene from Withania somnifera (Ashwagandha). App Biochem and Biotech 170:729–741

    Article  CAS  Google Scholar 

  • Singh R, Ranjan S, Nayaka S, Pathre UV, Shirke PA (2013b) Functional characteristics of a fruticose type of lichen, Stereocaulon foliolosum Nyl. in response to light and water stress. Acta Physiol Plant 35:1605–1615

    Article  CAS  Google Scholar 

  • Singh AK, Dwivedi V, Rai A, Pal S, Reddy SGE, Rao DKV, Shasany AKV, Nagegowda DK (2015a) Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance. Plant Biotechnol J. doi:10.1111/pbi.12347

    Google Scholar 

  • Singh P, Guleri R, Singh V, Kaur G, Katari H, Singh B, Kaura G, Kaul SC, Wadhwa R, Pati PK (2015b) Biotechnological interventions in Withania somnifera (L.) Dunal. Biotechnol Genet Eng 19:1–20

    Article  Google Scholar 

  • Tognetti VB, Van AO, Morreel K, Vandenbroucke K, Van DB, De CI, Chiwocha S, Fenske R, Prinsen E, Boerjan W (2010) Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 22:2660–2679

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ullmann P, Ury A, Rimmele D, Benveniste P, Bouvier-Nave P (1993) UDPglucose sterol-β-D-glucosyltransferase, a plasma membrane bound enzyme of plants: enzymatic properties and lipid dependence. Biochimie 75:713–719

    Article  PubMed  CAS  Google Scholar 

  • Webb MS, Irving TC, Steponkus PL (1995) Effect of plant sterols on the hydration and phase behavior of DOPE/DOPC mixtures. Biochim Biophys Acta 1239:226–238

    Article  PubMed  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Woo HH, Orbach MJ, Hirsch AM, Hawes MC (1999) Meristem-localized inducible expression of a UDP-glycosyltransferase gene is essential for growth and development in pea and alfalfa. Plant Cell 11:2303–2315

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamamoto R, Fujioka S, Iwamoto K, Demura T, Takatsuto S, Yoshida S, Fukuda H (2007) Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation. Plant Cell Physiol 48:74–83

    Article  PubMed  Google Scholar 

  • Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ, Chen XY (2012) Transcriptional regulation of plant secondary metabolism. J Integr Plant Biol 54(10):703–712

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Chu Y, Ding C, Zhang B, Huang Q, Hu Z, Huan R, Tian Y, Su X (2014) Transcriptome signaling of transgenicpoplar (Populus × euramericana ‘Guariento’)m expressing multiple resistance genes. BMC Genet 1:S7. doi:10.1186/1471-2156-15-S1-S7

    Article  Google Scholar 

  • Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C, Komatsu K (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull 50:760–765

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Director, CSIR-National Botanical Research Institute, Lucknow, for the facilities provided. SS is thankful to CSIR for the award of Senior Research Fellowship. PM is thankful to the Department of Biotechnology, New Delhi, for the financial support provided through the project No. GAP 231225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha Misra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Author contribution statement

Conceived and designed the experiments: SS PM LR, Corrected the manuscript: PM SS, Performed the experiments: SS RS, Analyzed the data: SS LR AN IZA. Wrote the paper: SS.

Additional information

Communicated by H. S. Judelson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2015_1879_MOESM1_ESM.tif

WsSGTL1 gene expression analysis in T1 transgenics of W.somnifera. a PCR analysis for the detection of NPTII gene (L to R); WT-wild type, C-nontransgenic control, L1 to L7 transgenics, M-100 bp ladder. b RT-PCR analysis for the detection of WsSGTL1 expression; WT, L1, L3, L4, L6 & L7-transgenics. c. Relative expression of WsSGTL1 gene by real time PCR. d Southern blot analysis showing the stable integration of NPTII gene in T1 progeny of transgenic W. somnifera overexpressing WsSGTL1 gene; Lane 1-WT, Lane 2-L1, Lane 3-L3 and Lane 4-L6. (TIFF 1698 kb)

299_2015_1879_MOESM2_ESM.tif

Morphological characterization of T1 transgenics of W.somnifera. a 8-week-old seedlings growing in the pot. b 4-month-old plants in the pot. c Morphological difference in the leaf size (L to R) of the transgenic lines and WT. (TIFF 4098 kb)

299_2015_1879_MOESM3_ESM.tif

Chlorophyll Fluorescence Imaging for maximum photochemical quantum yield (Fv/Fm) for WT and WsSGTL1 transgenic lines (L1, L2 and L3) of W. somnifera. a-d Before cold stress. e–h After 1 h of cold treatment (0 °C). i-l After recovery of 10 days. The false color code depicted on the right side of the images ranges from 0.000 (black) to 1.000 (pink) (TIFF 4548 kb)

299_2015_1879_MOESM4_ESM.tif

Light response curves for energy fluxes of PSII and PSI for WT and L1 before cold stress, immediate after 1 h of cold treatment (0 °C) and on 10th day of recovery. a-c Photochemical quantum yield for PSII Y(II). d-f Quantum yield of non-light-induced non-photochemical fluorescence quenching for PSII, Y(NO). g-i Quantum yield of light-induced non-photochemical fluorescence quenching for PSII, Y(NPQ). j-l ETR of PSII (ETRII) (M–O) Photochemical quantum yield for PSI Y(I). p-r Quantum yield of non-photochemical energy dissipation in PSI due to donor side limitation, Y(ND). s-u Quantum yield of non-photochemical energy dissipation in PSI due to acceptor side limitation Y(NA). v-x ETR of PSI (ETRI).Values are average ± SEs of three to five replicates (TIFF 1271 kb)

299_2015_1879_MOESM5_ESM.tif

Light response curves for energy fluxes of PSII and PSI for WT and L3 before cold stress, immediate after 1 h of cold treatment (0 °C) and on 10th day of recovery. a-c Photochemical quantum yield for PSII Y(II). d-f Quantum yield of non-light-induced non-photochemical fluorescence quenching for PSII, Y(NO). g-i Quantum yield of light-induced non-photochemical fluorescence quenching for PSII, Y(NPQ). j-l ETR of PSII (ETRII) (M–O) Photochemical quantum yield for PSI Y(I). p-r Quantum yield of non-photochemical energy dissipation in PSI due to donor side limitation, Y(ND). s-u Quantum yield of non-photochemical energy dissipation in PSI due to acceptor side limitation Y(NA). v-x ETR of PSI (ETRI).Values are average ± SEs of three to five replicates. (TIFF 1309 kb)

List of primers used in study. (DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saema, S., Rahman, L.u., Singh, R. et al. Ectopic overexpression of WsSGTL1, a sterol glucosyltransferase gene in Withania somnifera, promotes growth, enhances glycowithanolide and provides tolerance to abiotic and biotic stresses. Plant Cell Rep 35, 195–211 (2016). https://doi.org/10.1007/s00299-015-1879-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1879-5

Keywords

Navigation