Skip to main content

Advertisement

Log in

Transgenic merA and merB expression reduces mercury contamination in vegetables and grains grown in mercury-contaminated soil

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Arabidopsis, tobacco, tomato and rice with merA / merB expressed reduced mercury concentration of leaves, fruits or grains. These mercury-breathing plants produce agricultural products with acceptable levels of mercury from contaminated soil.

Abstract

Mercury contamination in plant food products can cause serious health risks to consumers. Transgenic approaches to enhance mercury phytoremediation have been accomplished with expression of bacterial merA and merB genes to convert toxic organic mercury to less toxic elemental mercury. However, little is known whether these genes can be used to produce safe foods from plants grown on mercury-contaminated land. We have used Arabidopsis and tobacco as model plants for leafy vegetables, and tomato and rice as representative fruit and grain crops to investigate whether merA and merB expression allows for production of safe foods from mercury-contaminated soils. Our results show that grown on heavily contaminated land with mercury, merA and merB expressing transgenic plants can produce vegetables, fruits and grains safe for human and animal consumption, while the wild-type plants cannot. The merA and merB transgenic plants can also efficiently remove mercury from soil. With increasing mercury contamination problems for the agricultural land worldwide, the use of the merA and merB genes can help produce safe food from mercury-polluted land and also remediate contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

merA :

Mercury-resistance operon gene A

merB :

Mercury-resistance operon gene B

MB:

Mercury-breathing

qRT-PCR:

Quantitative real-time PCR

WT:

Wild-type

References

  • AMAP/UNEP (2013) Technical background report for the global mercury assessment 2013. Arctic monitoring and assessment programme. http://www.amap.no/documents/download/1265. Accessed 3 June 2014

  • Bargagli R, Cateni D, Nelli L, Olmastroni S, Zagarese B (1997) Environmental impact of trace element emissions from geothermal power plants. Arch Environ Contam Toxicol 33:172–181

    CAS  PubMed  Google Scholar 

  • Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci USA 96:6808–6813

    CAS  PubMed  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    CAS  PubMed  Google Scholar 

  • Bizily SP, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiol 131:463–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boszke L, Kowalski A, Siepak J (2007) Fractionation of mercury in sediments of the Warta River (Poland). In: Pawlowski L, Dudzinska, Pawlowski A (eds) Environmental engineering: proceedings of the 2nd national congress on environmental engineering. CRC Press, Florida, pp 403–413

    Google Scholar 

  • Browne CL, Fang SC (1978) Uptake of mercury vapor by wheat: an assimilation model. Plant Physiol 61:430–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhao HX, Xie ZH, Huang HY, Zang SY, Lian B (2015) Heavy metal pollution characteristics in the Kaili coal mining region, Guizhou Province, China. J Resid Sci Technol 12:123–131

    Google Scholar 

  • Chen S, Wang X, Zhang L, Lin S, Liu D, Wang Q, Cai S, El-Tanbouly R, Gan L, Li Y (2016) Identification and characterization of tomato gibberellin 2-oxidases (GA2oxs) and effects of fruit-specific SlGA2ox1 overexpression on fruit and seed growth and development. Hortic Res 3:16059

    PubMed  PubMed Central  Google Scholar 

  • CSEPA (2012) Maximum levels of contaminants in foods GB2762-2012. China State Environmental Protection Administration, Beijing

    Google Scholar 

  • Czako M, Feng X, He Y, Liang D, Marton L (2006) Transgenic Spartina alterniflora for phytoremediation. Environ Geochem Health 28:103–110

    CAS  PubMed  Google Scholar 

  • Dutta TK, Papolu PK, Banakar P, Choudhary D, Sirohi A, Rao U (2015) Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes. Front Microbial 6:260

    Google Scholar 

  • Ebrahimi A, Salarifar A (2019) Air pollution analysis: nickel paste on multi-walled carbon nanotubes as novel adsorbent for the mercury removal from air. Anal Methods Environ Chem J 2:79–88

    Google Scholar 

  • Falandysz J, Drewnowska M (2015) Distribution of mercury in Amanita fulva (Schaeff.) Secr. mushrooms: accumulation, loss in cooking and dietary intake. Ecotoxicol Environ Safe 115:49–54

    CAS  Google Scholar 

  • Falandysz J, Zhang J, Wang YZ, Krasinska G, Kojta AK, Saba M, Shen T, Li T, Liu HG (2015) Evaluation of the mercury contamination in mushrooms of genus Leccinum from two different regions of the world: accumulation, distribution and probable dietary intake. Sci Total Environ 537:470–478

    CAS  PubMed  Google Scholar 

  • Falandysz J, Saba M, Liu HG, Li T, Wang JP, Wiejak A, Zhang J, Wang YZ, Zhang D (2016) Mercury in forest mushrooms and topsoil from the Yunnan highlands and the subalpine region of the Minya Konka summit in the Eastern Tibetan Plateau. Environ Sci Pollut Res 23:23730–23741

    CAS  Google Scholar 

  • Falandysz J, Dryzalowska A, Zhang J, Wang Y (2019) Mercury in raw mushrooms and in stir-fried in deep oil mushroom meals. J Food Compos Anal 82:103239

    CAS  Google Scholar 

  • Gibičar D, Horvat M, Logar M, Fajon V, Falnoga I, Ferrara R, Lanzillotta E, Ceccarini C, Mazzolai B, Denby B, Pacyna J (2009) Human exposure to mercury in the vicinity of chlor-alkali plant. Environ Res 109:355–367

    PubMed  Google Scholar 

  • Guo B, Weng M, Qiao L, Feng Y, Wang L, Zhang P, Wang X, Sui J, Liu T, Duan D, Wang B (2014) Expression of Porphyra yezoensis TPS gene in transgenic rice enhanced the salt tolerance. J Plant Breed Genet 2:45–55

    Google Scholar 

  • Hansen JC, Danscher G (1997) Organic mercury—an environmental threat to the health of exposed societies. Rev Environ Health 12:107–116

    CAS  PubMed  Google Scholar 

  • Heaton AC, Rugh CL, Kim T, Wang NJ, Meagher RB (2003) Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ Toxicol Chem 22:2940–2947

    CAS  PubMed  Google Scholar 

  • Horvat M, Nolde N, Fajon V, Jereb V, Logar M, Lojen S, Jacimovic R, Falnoga I, Liya Q, Faganeli J, Drobne D (2003) Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Sci Total Environ 304:231–256

    CAS  PubMed  Google Scholar 

  • Hsieh JL, Chen CY, Chiu MH, Chein MF, Chang JS, Endo G, Huang CC (2009) Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. J Hazard Mater 161:920–925

    CAS  PubMed  Google Scholar 

  • Hussein HS, Ruiz ON, Terry N, Daniell H (2007) Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environ Sci Technol 41:8439–8446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kojta AK, Zhang J, Wang Y, Li T, Saba M, Falandysz J (2015) Mercury contamination of fungi genus Xerocomus in the Yunnan province in China and the region of Europe. J Environ Sci Health A 50:1342–1350

    CAS  Google Scholar 

  • Landner L (1971) Biochemical model for the biological methylation of mercury suggested from methylation studies in vivo with Neurospora crassa. Nature 230:452–454

    CAS  PubMed  Google Scholar 

  • Leudo AM, Cruz Y, Montoya-Ruiz C, María PD, Saldarriaga JF (2020) Mercury phytoremediation with lolium perenne-mycorrhizae in contaminated soils. Sustainability 12:3795

    Google Scholar 

  • Li R, Wu H, Ding J, Fu W, Gan L, Li Y (2017) Mercury pollution in vegetables grains and soils from areas surrounding coal-fired power plants. Sci Rep 7:46545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyyra S, Meagher RB, Kim T, Heaton A, Montello P, Balish RS, Merkle SA (2007) Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury. Plant Biotechnol J 5:254–262

    CAS  PubMed  Google Scholar 

  • Mathieson PW (1995) Mercury: god of Th2 cells? Clin Exp Immunol 102:229–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mbanga O, Ncube S, Tutu H, Chimuka L, Cukrowska E (2019) Mercury accumulation and biotransportation in wetland biota affected by gold mining. Environ Monit Assess 191:186

    PubMed  Google Scholar 

  • Meng B, Feng X, Qiu G, Cai Y, Wang D, Li P, Shang L, Sommar J (2010) Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways. J Agric Food Chem 58:4951–4958

    CAS  PubMed  Google Scholar 

  • Miklavčič A, Mazej D, Jaćimović R, Dizdareviǒ T, Horvat M (2013) Mercury in food items from the Idrija mercury mine area. Environ Res 125:61–68

    PubMed  Google Scholar 

  • Mostafavi SM, Ebrahimi A (2019) Mercury determination in work place air and human biological samples based on dispersive liquid-liquid micro-extraction coupled with cold vapor atomic absorption spectrometry. Anal Methods Environ Chem J 2:49–58

    Google Scholar 

  • Murray M, Holmes SA (2004) Assessment of mercury emissions inventories for the Great Lakes states. Environ Res 95:282–297

    CAS  PubMed  Google Scholar 

  • Nagata T, Kiyono M, Pan-Hou H (2006) Engineering expression of bacterial polyphosphate kinase in tobacco for mercury remediation. Appl Microbiol Biotechnol 72:777–782

    CAS  PubMed  Google Scholar 

  • Nakagawa R, Yumita Y (1998) Change and behavior of residual mercury in paddy soils and rice of Japan. Chemosphere 37:1483–1487

    CAS  PubMed  Google Scholar 

  • Navarro-Alarcon M, Lopez-Martinez MC, Sanchez-Vinas M, Lopez-Garcia de la Serrana H (1991) Determination of mercury in crops by cold vapor atomic absorption spectrometry after microwave dissolution. J Agric Food Chem 39:2223–2225

    CAS  Google Scholar 

  • Oladele AT, Fadare OO (2015) Heavy metals and proximate composition of forest leafy vegetables in oil producing area of Nigeria. EJESM 8:451–463

    Google Scholar 

  • Pater S, Pinas JE, Hooykaas PJ, Zaal BJ (2013) ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation. Plant Biotechnol J 11:510–515

    PubMed  Google Scholar 

  • Perelló G, Martí-Cid R, Llobet JM, Domingo JL (2008) Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. J Agric Food Chem 56:11262–11269

    PubMed  Google Scholar 

  • Pérez-Díaz JR, Pérez-Díaz J, Madrid-Espinoza J, González-Villanueva E, Moreno Y, Ruiz-Lara S (2016) New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco. Plant Mol Biol 90:63–76

    PubMed  Google Scholar 

  • Qiu G, Feng X, Li P, Wang S, Li G, Shang L, Fu X (2008) Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China. J Agric Food Chem 56:2465–2468

    CAS  PubMed  Google Scholar 

  • Raj D, Kumar A, Maiti SK (2020) Brassica juncea (L.) czern. (indian mustard): a putative plant species to facilitate the phytoremediation of mercury contaminated soils. Int J Phytoremediat 22:733–744

    CAS  Google Scholar 

  • Raskin I (1996) Plant genetic engineering may help with environmental cleanup. Proc Natl Acad Sci USA 93:3164–3166

    CAS  PubMed  Google Scholar 

  • Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Envrion Health Perspect 108:511–533

    Google Scholar 

  • Rothenberg SE, Feng X (2012) Mercury cycling in a flooded rice paddy. J Geophys Res-Biogeosci 117:G03003

    Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187

    CAS  PubMed  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    CAS  PubMed  Google Scholar 

  • Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H (2011) Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J 9:609–617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Bio/Technology 13:468–474

    CAS  PubMed  Google Scholar 

  • Sasaki Y, Hayakawa T, Inoue C, Miyazaki A, Silver S, Kusano T (2006) Generation of mercury-hyperaccumulating plants through transgenic expression of the bacterial mercury membrane transport protein MerC. Transgenic Res 15:615

    CAS  PubMed  Google Scholar 

  • Shao DD, Wu SC, Liang P, Kang Y, Fu WJ, Zhao KL, Cao ZH, Wong MH (2012) A human health risk assessment of mercury species in soil and food around compact fluorescent lamp factories in Zhejiang Province, PR China. J Hazard Mater 221:28–34

    PubMed  Google Scholar 

  • Shirkhanloo H, Mirzahosseini SAH, Shirkhanloo N, Moussavi-Najarkola SA, Farahani H (2015) The evaluation and determination of heavy metals pollution in edible vegetables water and soil in the south of Tehran province by GIS. Arch Environ Prot 41:64–74

    Google Scholar 

  • Takeuchi T, Morikawa N, Matsumoto H, Shiraishi Y (1962) A pathological study of Minamata disease in Japan. Acta Neuropathol 2:40–57

    Google Scholar 

  • Tamashiro H, Arakaki M, Akagi H, Futatsuka M, Roht LH (1985) Mortality and survival for Minamata disease. Int J Epidemiol 14:582–588

    CAS  PubMed  Google Scholar 

  • Tangahu BV, Abdullah S, Rozaimah S, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161

    Google Scholar 

  • Taylor H, Appleton JD, Lister R, Smith B, Chitamweba D, Mkumbo O, Machiwa JF, Tesha AL, Beinhoff C (2005) Environmental assessment of mercury contamination from the Rwamagasa artisanal gold mining centre, Geita District, Tanzania. Sci Total Environ 343:111–133

    CAS  PubMed  Google Scholar 

  • Timoori S (2019) Environmental Health: evaluation of heavy metals pollution in Isfahan industrial zone from soils, well/eluent waters and waste water by microwave- electro-thermal atomic absorption spectrometry. Anal Methods Environ Chem J 2:55–62

    Google Scholar 

  • USEPA (2007) Mercury in solids and solutions by thermal decomposition, amalgamation and atomic absorption spectrometry. US Government Printing Office, Washington DC

    Google Scholar 

  • Usuki F, Yamashita A, Fujimura M (2011) Post-transcriptional defects of antioxidant selenoenzymes cause oxidative stress under methylmercury exposure. J Biol Chem 286:6641–6649

    CAS  PubMed  Google Scholar 

  • WHO (1991) International program on chemical safety: environmental health criteria 118 inorganic mercury. World Health Organization, Geneva

    Google Scholar 

  • WHO (2011) Evaluation of certain food additives and contaminants. World Health Organization, Geneva

    Google Scholar 

  • Wirnkor VA, Ebere EC, Ngozi VE (2019) The importance of microplastics pollution studies in water and soil of Nigeria ecosystems. Anal Methods Environ Chem J 2:89–96

    Google Scholar 

  • Yin J, Chang X, Kasuga T, Bui M, Reid MS, Jiang CZ (2015) A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia. Hortic Res 2:15059

    PubMed  PubMed Central  Google Scholar 

  • Zahir F, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20:351–360

    CAS  PubMed  Google Scholar 

  • Zhang H, Feng X, Larssen T, Shang L, Li P (2010) Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain. Environ Sci Technol 44:4499–4504

    CAS  PubMed  Google Scholar 

  • Zhang Z, Wen Q, Liu F, Zhao X, Liu B, Xu J, Yi L, Hu S, Wang X, Zuo L, Li N, Li M, Shi L, Zeng T, Ju H (2016) Urban expansion in China and its effect on cultivated land before and after initiating “Reform and Open Policy”. Sci China Earth Sci 59:1930–1945

    Google Scholar 

  • Zheng N, Wang Q, Zheng D (2007) Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables. Sci Total Environ 383:81–89

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Introduction of Talents Foundation of Nanjing Agricultural University to Yi Li and the Grant of “Jiangsu’s Double Plan Project for Entrepreneurship and Innovation” to Yi Li.

Author information

Authors and Affiliations

Authors

Contributions

YL conceived, and YL, RL, HW, LG, and JD designed the experiments. RL performed the experiments and analyzed the data. JD, HW, NL and WF provided helps in the experiments. RL, HW, LG, and YL co-wrote and edited the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Lijun Gan or Yi Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Günther Hahne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1086 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Wu, H., Ding, J. et al. Transgenic merA and merB expression reduces mercury contamination in vegetables and grains grown in mercury-contaminated soil. Plant Cell Rep 39, 1369–1380 (2020). https://doi.org/10.1007/s00299-020-02570-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-020-02570-8

Keywords

Navigation