Skip to main content
Log in

Patient dose in full-field digital mammography: an Italian survey

  • Physics
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aim of this study was to compare performance and patient dose of full-field digital mammography units for clinical use. Measurements of linearity and automatic exposure control stability were performed on four units installed in as many Italian sites. The tube output was also obtained by the same ionization chamber, permitting to evaluate ratios mGy/mAs for each available spectrum. The entrance air-kerma was calculated over a sample of 800 cranio-caudal mammograms and the average glandular dose obtained, assuming two mean glandular compositions of 50 and 30%, respectively. Digital systems showed very good linearity and comparable responses. The stability of the automatic exposure control was better than 5% for all systems. Regarding doses, the two mammography units that work mainly in contrast mode deliver, respectively, 17 and 28% more dose compared with those working in standard mode. For the latter mode, the mean average glandular dose was in the range 1.25–1.37 mGy and 1.37–1.49 mGy for the 50 and 30% glandular composition, respectively. Results of this study were compared with those of other surveys, showing that full-field digital mammography allows a significant clinical dose reduction compared with screen/film mammography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a, b.
Fig. 3a–d.
Fig. 4a–c.
Fig. 5.

Similar content being viewed by others

References

  1. Venta LA, Hendrick RE, Adler YT et al. (2001) Rates and causes of disagreement in interpretation of full-field digital mammography and film-screen mammography in a diagnostic setting. Am J Roentgenol 176:1241–1248

    CAS  Google Scholar 

  2. Lewin JM, Hendrick RE, D'Orsi CJ et al. (2001) Comparison of full-field digital mammography with screen-film mammography for cancer detection: results of 4945 paired examinations. Radiology 218:873–880

    CAS  PubMed  Google Scholar 

  3. Obenauer S, Luftner-Nagel S, Heyden D von, Munzel U, Baum F, Grabbe E (2002) Screen-film vs full-field digital mammography: image quality, detectability and characterization of lesions. Eur Radiol 12:1697–1702

    Article  CAS  PubMed  Google Scholar 

  4. Hermann KP, Obenauer S, Funke M, Grabbe E (2002) Magnification mammography: a comparison of full-field digital mammography and screen-film mammography for the detection of simulated small masses and microcalcifications. Eur Radiol 12:2188–2191

    PubMed  Google Scholar 

  5. Baum F, Fischer U, Obenauer S, Grabbe E (2002) Computer-aided detection in direct digital full-field mammography: initial results. Eur Radiol 12:3015–3017

    CAS  PubMed  Google Scholar 

  6. Fischer U, Baum F, Obenauer S, Luftner-Nagel S, Heyden D von, Vosshenrich R, Grabbe E (2002) Comparative study in patients with microcalcifications: full-field digital mammography vs screen-film mammography. Eur Radiol 12:2679–2683

    CAS  PubMed  Google Scholar 

  7. Vedantham S, Karellas A, Suryanarayanan S et al. (2000) Full breast digital mammography with an amorphous silicon-based flat panel detector: physical characteristics of a clinical prototype. Med Phys 27:558–567

    Article  PubMed  Google Scholar 

  8. Vedantham S, Karellas A, Suryanarayanan S, D'Orsi CJ, Hendrick RE (2000) Breast imaging using an amorphous silicon-based full-field digital mammographic system: stability of a clinical prototype. J Dig Imaging 13:191–199

    CAS  Google Scholar 

  9. Berns EA, Hendrick RE, Cutter GR (2002) Performance comparison of full-field digital mammography to screen-film mammography in clinical practice. Med Phys 29:830–834

    Article  PubMed  Google Scholar 

  10. Yorker JG, Jeffrey G, Jeromin LS et al. (2002) Characterization of a full-field digital mammography detector based on direct conversion in selenium. SPIE Proc 4682:21–29

    Google Scholar 

  11. Besson GM, Guy M, Koch et al. (2002) Design and evaluation of a slot-scanning full-field digital mammography system. SPIE Proc 4682:457–468

    Google Scholar 

  12. Arakawa S, Yasuda H, Hiroaki, Kohda K et al. (2000) Improvement of image quality in CR mammography by detection of emissions from dual-side of an imaging plate. SPIE Proc 3977:590–600

    Google Scholar 

  13. Pisano ED (2000) Current status of full-field digital mammography. Radiology 214:26–28

    CAS  PubMed  Google Scholar 

  14. Yaffe MJ (1992) Digital mammography. In: Haus AG, Yaffe MJ (eds) Categorical course in physics: technical aspects of breast imaging. Radiological Society of North America, Oak Brook, Ill., pp 245–255

  15. Haus AG, Yaffe MJ (2000) Screen-film and digital mammography. Radiol Clin North Am 38:871–898

    CAS  PubMed  Google Scholar 

  16. Suleiman OH, Spelic DC, McCrohan JL, Symonds GR, Houn F (1999) Mammography in the 1990s: the United States and Canada. Radiology 210:345–351

    CAS  PubMed  Google Scholar 

  17. Kruger RL, Schueler BA (2001) A survey of clinical factors and patient dose in mammography. Med Phys 28:1149–1454

    Article  Google Scholar 

  18. Feig SA (2002) Effect of service-screening mammography on population mortality from breast carcinoma. Cancer 95:451–457

    Article  PubMed  Google Scholar 

  19. Muller S (1999) Full-field digital mammography designed as a complete system. Eur J Radiol 31:25–34

    CAS  PubMed  Google Scholar 

  20. Gennaro G, Baldelli P, Di Maggio C, Taibi A, Gambaccini M (2003) A quality control first experience in full-field digital mammography. In: Peitgen HO (ed) Digital mammography, IWDM 2002. Springer, Berlin Heidelberg New York, pp 81–84

  21. Senographe 2000 D Acquisition System Service Manual, GE Technical Publications 2302228–100, revision 1, Half-value layer measurement, pp 187–189

  22. Dance DR, Skinner CL, Young KC, Beckett JR, Kotre CJ (2000) Additional factors for the estimation of mean glandular dose using the UK mammography dosimetry protocol. Phys Med Biol 45:3225–3240

    Article  CAS  PubMed  Google Scholar 

  23. Dance DR, Thilander-Klang A, Sandborg M, Skinner CL, Castellano Smith A, Alm-Carlsson G (2000) Influence of anode/filter material and tube potential on contrast, signal-to-noise ratio and average absorbed dose in mammography: a Monte Carlo study. Br J Radiol 73:1056–1067

    CAS  PubMed  Google Scholar 

  24. Burch A, Goodman DA (1998) A pilot survey of radiation doses received in the United Kingdom breast screening programme. Br J Radiol 71:517–527

    CAS  PubMed  Google Scholar 

  25. Cranley K, Gilmore BJ, Fogarty GVA, Desponds L (1997) Catalog of diagnostic X-ray spectra and other data: report no. 78. Institute of Physics and Enginering in Medicine, York, UK

  26. American College of Radiology (1994) Committee on Quality Assurance in Mammography: mammography quality control, revised edition. American College of Radiology, Reston, Virginia

    Google Scholar 

  27. The European Protocol for the Quality Control of the Technical Aspects of Mammography Screening (1993) CEC-Report EUR 14821

  28. European Protocol on Dosimetry in Mammography (1996) CEC-Report EUR 16263

  29. European Guidelines for Quality Assurance in Mammography Screening (2001) European Commission, Luxembourg, 3rd edn

  30. Fahrig R, Yaffe M (1994) A model for optimization of spectral shape in digital mammography. Med Phys 21:1463–1471

    Article  CAS  PubMed  Google Scholar 

  31. Fahrig R, Yaffe M (1994) Optimization of spectral shape in digital mammography: dependence on anode material, breast thickness and lesion type. Med Phys 21:1473–1481

    Article  CAS  PubMed  Google Scholar 

  32. Kimme-Smith C (1999) New digital mammography systems may require different X-ray spectra and, therefore, more general normalized glandular dose values. Radiology 213:7–10

    CAS  PubMed  Google Scholar 

  33. Klein R, Aichinger H, Dierker J, Jansen JTM, Joite-Barfus S, Sabel M, Schulz-Wendtland R, Zoetelief J (1997) Determination of average glandular dose with modern mammography units for two large groups of patients. Phys Med Biol 42:651–671

    Article  CAS  PubMed  Google Scholar 

  34. Stines J, Noël A, Estivalet S, Troufléau P, Netter E, Quinquis J (1998) Qualité image densité optique en mammographie: étude sur fantôme. J Radiol 79:331–335

    CAS  PubMed  Google Scholar 

  35. Rosenberg RD, Kelsey CA, Williamson MR, Houston JD (2001) Computer-based collection of mammographic exposure data for quality assurance and dosimetry. Med Phys 28:1546–1551

    Article  CAS  PubMed  Google Scholar 

  36. Hermann KP, Obenauer S, Marten K, Kehbel S, Fischer U, Grabbe E (2002) Average glandular dose with amorphous silicon full-field digital mammography: clinical results. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174:696–699

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Taibi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gennaro, G., Baldelli, P., Taibi, A. et al. Patient dose in full-field digital mammography: an Italian survey. Eur Radiol 14, 645–652 (2004). https://doi.org/10.1007/s00330-003-2010-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-003-2010-9

Keywords

Navigation