Skip to main content

Advertisement

Log in

Microbubble ultrasound contrast agents: an update

  • Ultrasound
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Microbubble contrast agents for ultrasound (US) have gained increasing interest in recent years, and contrast-enhanced US (CEUS) is a rapidly evolving field with applications now extending far beyond the initial improvements achieved in Doppler US. This has been achieved as a result of the safe profile and the increased stability of microbubbles persisting in the bloodstream for several minutes, and also by the availability of specialized contrast-specific US techniques, which allow a definite improvement in the contrast resolution and suppression of signal from stationary tissues. CEUS with low transmit power allows real-time scanning with the possibility of prolonged organ insonation. Several reports have described the effectiveness of microbubble contrast agents in many clinical applications and particularly in the liver, spleen, and kidneys. CEUS allows the assessment of the macrovasculature and microvasculature in different parenchymas, the identification and characterization of hepatic and splenic lesions, the depiction of septal enhancement in cystic renal masses, and the quantification of organ perfusion by the quantitative analysis of the echo-signal intensity. Other fields of application include the assessment of abdominal organs after traumas and the assessment of vesico-ureteral reflux in children. Finally, tumor-targeted microbubbles make possible the depiction of specific biologic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gramiak R, Shah PM (1968) Echocardiography of the aortic root. Invest Radiol 3:356–366

    Article  PubMed  CAS  Google Scholar 

  2. Quaia E (2005) Classification and safety of microbubble-based contrast agents. In: Quaia E (ed) Contrast media in ultrasonography: Basic principles and clinical applications. Springer, Berlin Heidelberg New York, pp 43–70

    Google Scholar 

  3. Correas JM, Bridal L, Lesavre A et al (2001) Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur Radiol 11:1316–1328

    Article  PubMed  CAS  Google Scholar 

  4. Hauff P, Fritsch T, Reinhardt M et al (1997) Delineation of experimental liver tumors in rabbits by a new ultrasound contrast agent and stimulated acoustic emission. Invest Radiol 32:94–99

    Article  PubMed  CAS  Google Scholar 

  5. Blomley MJK, Albrecht T, Cosgrove DO et al (1998) Stimulated acoustic emission in liver parenchyma with Levovist. Lancet 351:568–569

    Article  PubMed  CAS  Google Scholar 

  6. Forsberg F, Goldberg BB, Liu JB et al (1999) Tissue specific US contrast agent for evaluation of hepatic and splenic parenchyma. Radiology 210:125–132

    PubMed  CAS  Google Scholar 

  7. Quaia E, Blomley MJK, Patel S et al (2002) Initial observations on the effect of irradiation on the liver-specific uptake of Levovist. Eur J Radiol 41:192–199

    Article  PubMed  Google Scholar 

  8. Kindberg GM, Tolleshaung H, Roos N, Skotland T (2003) Hepatic clearance of Sonazoid perfluorobutane microbubble by Kupffer cells does not reduce the ability of liver to phagocytose or degrade albumin microspheres. Cell Tissue Res 312(1):49–54

    PubMed  Google Scholar 

  9. Harvey CJ, Blomley MJK, Eckersley RJ, Cosgrove DO (2001) Developments in ultrasound contrast media. Eur Radiol 11:675–689

    Article  PubMed  CAS  Google Scholar 

  10. Morel DR, Schwieger I, Hohn L et al (2000) Human pharmacokinetics and safety evaluation of SonoVue, a new contrast agent for ultrasound imaging. Invest Radiol 35:80–85

    Article  PubMed  CAS  Google Scholar 

  11. Torzilli G (2005) Adverse effects associated with SonoVue use. Expert Opin Drug Saf 4(3):399–401

    Article  PubMed  CAS  Google Scholar 

  12. Quaia E (2005) Physical basis and principles of action of microbubble-based contrast agents. In: Quaia E (ed) Contrast media in ultrasonography: Basic principles and clinical applications. Springer, Berlin Heidelberg New York, pp 15–30

    Chapter  Google Scholar 

  13. Whittingham T (2005) Contrast-specific imaging techniques: technical perspective. In: Quaia E (ed) Contrast media in ultrasonography: Basic principles and clinical applications. Springer, Berlin Heidelberg New York, pp 43–70

    Chapter  Google Scholar 

  14. Lencioni R, Cioni D, Bartolozzi C (2002) Tissue harmonic and contrast-specific imaging: back to gray scale in ultrasound. Eur Radiol 12:151–165

    Article  PubMed  Google Scholar 

  15. Moriyasu F, Kono Y, Nada T, Matsumura T, Suginoshita Y, Kobayashi K (1996) FLASH echo (passive cavitation) imaging of the liver by using US contrast agents and intermittent scanning sequence [abstract]. Radiology 201(P):196

    Google Scholar 

  16. Tetsuya K (2002) Technical description of 1.5-harmonic imaging, an effective technique for contrast-enhanced ultrasound diagnosis. Med Rev 87:22–25

    Google Scholar 

  17. Borsboom JM, Chin CT, de Jong N (2003) Nonlinear coded excitation method for ultrasound contrast imaging. Ultrasound Med Biol 29(2):277–284

    Article  PubMed  Google Scholar 

  18. Burns PN, Wilson SR, Hope Simpson D (2000) Pulse Inversion Imaging of liver blood flow: an improved method for characterization of focal masses with microbubble contrast. Invest Radiol 35:58–71

    Article  PubMed  CAS  Google Scholar 

  19. Hope Simpson D, Chin CT, Burns PN (1999) Pulse inversion doppler: A new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Trans Ultrason Ferroelec Freq Contr 46:372–382

    Article  Google Scholar 

  20. Berry JD, Sidhu PS (2004) Microbubble contrast-enhanced ultrasound in liver transplantation. Eur Radiol 14(Suppl 8):P96–P103

    PubMed  Google Scholar 

  21. Rossi S, Rosa L, Ravetta V et al (2006) Contrast-enhanced versus conventional and color Doppler sonography for the detection of thrombosis of the portal and hepatic venous system. AJR Am J Roentgenol 186:763–773

    Article  PubMed  Google Scholar 

  22. Tarantino L, Francica G, Sordelli I et al (2006) Diagnosis of benign and malignant portal vein thrombosis in cirrhotic patients with hepatocellular carcinoma: color Doppler US, contrast-enhanced US, and fine-needle biopsy. Abdom Imaging Jul 24; [Epub ahead of print]

  23. Albrecht T, Blomley M, Bolondi L et al EFSUMB Study group (2004) Guidelines for the use of contrast agents in ultrasound. Ultraschall Med 25:249–256

    Article  PubMed  CAS  Google Scholar 

  24. Dill-Macky M, Burns P, Khalili K, Wilson S (2002) Focal hepatic masses: enhancement patterns with SH U 508 A and pulse inversion US. Radiology 222:95–102

    Article  PubMed  Google Scholar 

  25. Quaia E, Bertolotto M, Calderan L, Mosconi E, Pozzi Mucelli R (2003) US characterization of focal hepatic lesions with intermittent high acoustic power mode and contrast material. Acad Radiol 10:739–750

    Article  PubMed  Google Scholar 

  26. Catalano O, Sandomenico F, Raso MM, Siani A (2004) Low mechanical index contrast-enhanced sonographic findings of pyogenic hepatic abscesses. AJR Am J Roentgenol 182(2):447–450

    PubMed  Google Scholar 

  27. Nicolau C, Catalá V, Vilana R, Gilabert R, Bianchi L, Sole M, Pages M, Bru C (2004) Evaluation of hepatocellular carcinoma using SonoVue, a second generation ultrasound contrast agent: correlation with cellular differentiation. Eur Radiol 14:1092–1099

    Article  PubMed  Google Scholar 

  28. Quaia E, Bartolotta TV, Midiri M, Bertolotto M, Belgrano M, Cova M (2006) Analysis of different contrast enhancement patterns after microbubble-based contrast agent injection in liver hemangiomas with atypical appearance at baseline scan. Abdom Imag 31(1):59–64

    Article  CAS  Google Scholar 

  29. Quaia E, Calliada F, Bertolotto M et al (2004) Characterization of focal liver lesions by contrast-specific US modes and a sulfur hexafluoride-filled microbubble contrast agent: diagnostic performance and confidence. Radiology 232:420–430

    Article  PubMed  Google Scholar 

  30. Kim SH, Lee JM, Lee JY, Lee JY, Yang HK, Lee HJ, Shin KS, Choi BI (2005) Value of contrast-enhanced sonography for the characterization of focal hepatic lesions in patients with diffuse liver disease: Receiver operating characteristic analysis. AJR Am J Roentgenol 184:1077–1084

    PubMed  Google Scholar 

  31. Nicolau C, Vilana R, Catala V, Bianchi L, Gilabert R, Garcia A, Bru C (2006) Importance of evaluating all vascular phases on contrast-enhanced sonography in the differentiation of benign from malignant focal liver lesions. AJR Am J Roentgenol 186:158–167

    Article  PubMed  Google Scholar 

  32. Leen E, Ceccotti P, Kalogeropoulou C, Angerson WJ, Moug SJ, Horgan PJ (2006) Prospective multicenter trial evaluating a novel method of characterizing focal liver lesions using contrast-enhanced sonography. AJR Am J Roentgenol 186:1551–1559

    Article  PubMed  Google Scholar 

  33. Bryant T, Blomley MJK, Albrecht T et al (2004) Improved characterization of liver lesions with liver-phase uptake of liver specific microbubbles: prospective multicenter trials. Radiology 232:799–809

    Article  PubMed  Google Scholar 

  34. Wilson SR, Burns P (2006) An algorithm for the diagnosis of focal liver masses using microbubble contrast-enhanced pulse-inversion sonography. AJR Am J Roentgenol 186(5):1401–1412

    Article  PubMed  Google Scholar 

  35. Quaia E, Palumbo A, Rossi S, Degobbis F, Cernic S, Tona G, Cova M (2006) Characterization of liver tumors insonated at low transmit power after microbubble contrast agent injection: comparison of visual and quantitative analysis in diagnostic performance. AJR Am J Roentgenol 186:1560–1570

    Article  PubMed  Google Scholar 

  36. Wu W, Chen MH, Yin SS et al (2006) The role of contrast-enhanced sonography of focal liver lesions before percutaneous biospy. AJR Am J Roentgenol 187:752–761

    Article  PubMed  Google Scholar 

  37. Bipat S, van Leeuwen MS, Comans EF et al (2005) Colorectal liver metastases: CT, MR imaging, and PET for diagnosis-meta-analysis. Radiology 237:123–1312

    Article  PubMed  Google Scholar 

  38. Albrecht T, Blomley MJK, Burns PN et al (2003) Improved detection of hepatic metastases with pulse-inversion US during the liver-specific phase of SHU 508A: multicenter study. Radiology 227:361–370

    Article  PubMed  Google Scholar 

  39. Oldenburg A, Hohmann J, Foert E et al (2005) Detection of hepatic metastases with low MI real time contrast enhanced sonography and SonoVue. Ultraschall Med 26(4):277–284

    Article  PubMed  CAS  Google Scholar 

  40. Dietrich CF, Kratzer W, Strobe D et al (2006) Assessment of metastatic liver disease in patients with primary extrahepatic tumors by contrast-enhanced sonography versus CT and MRI. World J Gastroenterol 12(11):1699–1705

    PubMed  Google Scholar 

  41. Konopke R, Kersting S, Bergert H, Bloomenthal A, Gastmeier J, Saeger HD, Bunk A (2006) Contrast-enhanced ultrasonography to detect liver metastases: A prospective trial to compare transcutaneous unenhanced and contrast-enhanced ultrasonography in patients undergoing laparotomy. Int J Colorectal Dis May 30 [Epub ahead of print]

  42. Quaia E, D’Onofrio M, Palumbo A, Rossi S, Bruni S, Cova M (2006) Comparison of contrast-enhanced ultrasonography vs baseline ultrasound and contrast-enhanced computed tomography in metastatic disease of the liver: diagnostic performance and confidence. Eur Radiol 16(7):1599–1609

    Article  PubMed  Google Scholar 

  43. Siösteen AK, Elvin A (2004) Intra-operative uses of contrast-enhanced ultrasound. Eur Radiol 14(Suppl 8):P87–P95

    PubMed  Google Scholar 

  44. Torzilli G, Del Fabbro D, Palmisano A et al (2005) Contrast-enhanced intraoperative ultrasonography during hepatectomies for colorectal cancer liver metastases. J Gastrointest Surg 9(8):1148–1153

    Article  PubMed  Google Scholar 

  45. Leen E, Cecotti P, Moug SJ et al (2006) Potential value of contrast-enhanced intraoperative ultrasonography during partial hepatectomy for metastases: an essential investigation before resection? Ann Surg 243(2):236–240

    Article  PubMed  Google Scholar 

  46. Vilana R, Bianchi L, Varela M et al (2006) Is microbubble-enhanced ultrasonography sufficient for assessment of response to percutaneous treatment in patients with early hepatocellular carcinoma? Eur Radiol 16(11):2454–2462

    Article  PubMed  CAS  Google Scholar 

  47. Meloni MF, Livraghi T, Filice C, Lazzaroni S, Calliada F, Perretti L (2006) Radiofrequency ablation of liver tumors: the role of microbubble contrast agents. Ultrasound Q 22(1):41–47

    PubMed  Google Scholar 

  48. WHO handbook for reporting results of cancer treatment (1979) World Health Organization Offset Publication No. 48. Geneva

  49. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to tratment in solid tumors. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  50. Krix M, Plathow C, Essig M, Herfarth K, Debus J, Kauczor HU, Delorme S (2005) Monitoring of liver metastases after stereotactic radiotherapy using low-MI contrast-enhanced ultrasound-initial results. Eur Radiol 15(4):677–684

    Article  PubMed  CAS  Google Scholar 

  51. De Giorgi U, Alberti C, Benea G, Conti M, Marangolo M (2005) Effect of angiosonography to monitor response during imatinib treatment in patientswith metastatic gastrointestinal stromal tumors. Clin Cancer Res 11(17):6171–6176

    Article  PubMed  CAS  Google Scholar 

  52. Bertolotto M, Pozzato G, Croce LS, Nascimben F, Gasparini C, Cova MA, Tiribelli C (2006) Blood flow changes in hepatocellular carcinoma after the administration of thalidomide assessed by reperfusion kinetics during microbubble infusion: preliminary results. Invest Radiol 41:15–21

    Article  PubMed  CAS  Google Scholar 

  53. Lim AK, Patel N, Eckersley RJ, Taylor-Robinson SD, Cosgrove DO, Blomley MJK (2004) Evidence for spleen-specific uptake of a microbubble contrast agent: a quantitative study in healthy volunteers. Radiology 231:785–788

    Article  PubMed  Google Scholar 

  54. Harvey CJ, Lim AK, Lynch M, Blomley MJK, Cosgrove DO (2005) Application of ultrasound microbubbles in spleen. In: Quaia E (ed) Contrast media in ultrasonography: Basic principles and clinical applications. Springer, Berlin Heidelberg New York, pp 205–219

    Chapter  Google Scholar 

  55. Catalano O, Sandomenico F, Matarazzo I, Siani A (2005) Contrast-enhanced sonography of the spleen. AJR Am J Roentgenol 184:1150–1156

    PubMed  Google Scholar 

  56. Ferraioli G, Di Sarno A, Coppola C, Giorgio A (2006) Contrast-enhanced low mechanical index ultrasonography in hepatic splenosis. J Ultrasound Med 25(1):133–136

    PubMed  Google Scholar 

  57. Claudon M, Plouin PF, Baxter G et al (2000) Renal arteries in patients at risk of renal arterial stenosis: multicenter evaluation of the echo-enhancer SH U 508A at color and spectral Doppler US. Levovist renal artery stenosis study group. Radiology 214:739–746

    PubMed  CAS  Google Scholar 

  58. Correas JM, Claudon M, Tranquart F, Helenon AO (2006) The kidney: imaging with microbubble contrast agents. Ultrasound Q 22(1):53–66

    PubMed  Google Scholar 

  59. Quaia E, Siracusano S, Bertolotto M et al (2003) Characterization of renal tumours with pulse inversion harmonic imaging by intermittent high mechanical index technique. Preliminary results. Eur Radiol 13:1402–1412

    PubMed  Google Scholar 

  60. Tamai H, Takiguchi Y, Oka M et al (2005) Contrast-enhanced ultrasonography in the diagnosis of solid renal tumors. J Ultrasound Med 24(12):1635–1640

    PubMed  Google Scholar 

  61. Quaia E (2005) Characterization and detection of renal tumors. In: Quaia E (ed) Contrast media in Ultrasonography: Basic principles and clinical applications. Springer, Berlin Heidelberg New York, pp 223–244

    Chapter  Google Scholar 

  62. Ascenti G, Gaeta M, Magno C, Mazziotti S, Blandino A, Melloni D, Zimbaro G (2004) Contrast-enhanced second-harmonic sonography in the detection of pseudocapsule in renal cell carcinoma. AJR Am J Roentgenol 182:1525–1530

    PubMed  Google Scholar 

  63. Slabaugh TK, Machaidze Z, Hennigar R, Ogan K (2005) Monitoring radiofrequency renal lesions in real time using contrast-enhanced ultrasonography: a porcine model. J Endourol 19:579–583

    Article  PubMed  Google Scholar 

  64. Quaia E, Siracusano S, Palumbo A, Ciciliato S, Rossi S, Bruni S, Bussani R, Cova M (2006) Detection of focal renal perfusion defects in rabbits after sulfur hexafluoride-filled microbubble injection at low transmit power ultrasound insonation. Eur Radiol 16:166–172

    Article  PubMed  Google Scholar 

  65. Albrecht T, Blomley MJ, Cosgrove DO et al (1999) Non-invasive diagnosis of hepatic cirrhosis by transit-time analysis of an ultrasound contrast agent. Lancet 353:1579–1583

    Article  PubMed  CAS  Google Scholar 

  66. Blomley MJ, Lim AK, Harvey CJ et al (2003) Liver microbubble transit time compared with histology and Child-Pugh score in diffuse liver disease: a cross sectional study. Gut 52:1188–1193

    Article  PubMed  CAS  Google Scholar 

  67. Cosgrove DO, Eckersley R, Blomley M, Harvery C (2001) Quantification of blood flow. Eur Radiol 11:1338–1344

    Article  PubMed  CAS  Google Scholar 

  68. Correas JM, Burns PN, Lai X, Qi X (2000) Infusion versus bolus of an ultrasound contrast agent: in vivo dose-response measurements of BR1. Invest Radiol 35:72–79

    Article  PubMed  CAS  Google Scholar 

  69. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant infusion. Circulation 97:473–483

    PubMed  CAS  Google Scholar 

  70. Lucidarme O, Franchi-Abella S, Correas JM et al (2003) Blood flow quantification with contrast-enhanced US: entrance in the section phenomenon-phantom and rabbit study. Radiology 228:473–479

    Article  PubMed  Google Scholar 

  71. Krix M, Kiessling F, Farhan N (2003) A multivessel model describing replenishment kinetics of ultrasound contrast agent for quantification of tissue perfusion. US Med Biol 29:1421–1430

    Article  Google Scholar 

  72. Weber MA, Krix M, Jappe U et al (2005) Pathologic skeletal muscle perfusion in patients with myositis: detection with quantitative contrast-enhanced US-initial results. Radiology 238(2):640–649

    Article  PubMed  Google Scholar 

  73. McCarville MB, Streck CJ, Dickson PV, Li CS, Nathwani AC, Davidoff AM (2006) Angiogenesis inhibitors in a murine neuroblastoma model: quantitative assessment of intratumoral blood flow with contrast-enhanced gray-scale US. Radiology 240(1):73–81

    Article  PubMed  Google Scholar 

  74. Stieger SM, Bloch SH, Foreman O, Wisner ER, Ferrara KW, Dayton PA (2006) Ultrasound assessment of angiogenesis in a matrigel model in rats. Ultrasound Med Biol 32(5):673–681

    Article  PubMed  Google Scholar 

  75. Holsher T, Wilkening W, Draganski B et al (2005) Transcranial ultrasound brain perfusion assessment with a contrast agent-specific imaging mode: results of a two-center trial. Stroke 36(10):2283–2285

    Article  Google Scholar 

  76. Federlein J, Postert T, Meves S, Weber S, Przuntek H, Buttner T (2000) Ultrasonic evaluation of pathological brain perfusion in acute stroke using second harmonic imaging. J Neurol Neurosurg Psychiatry 69:616–622

    Article  PubMed  CAS  Google Scholar 

  77. Wei K, Ragosta M, Thorpe J, Coggins M, Moos S, Kaul S (2001) Non-invasive quantification of coronary blood flow reserve in humans using myocardial contrast echocardiography. Circulation 103:2560–2565

    PubMed  CAS  Google Scholar 

  78. Wei K, Tong KL, Belcik T, Rafter P, Ragosta M, Wang XQ, Kaul S (2005) Detection of coronary stenoses at rest with myocardial contrast echocardiography. Circulation 112(8):1154–1160

    Article  PubMed  Google Scholar 

  79. Gasparini C, Bertolotto M, Croce SL, Perrone R, Quaia E, Tiribelli C (2003) Evaluation of liver parenchymal blood flow with contrast-enhanced US: preliminary results in healthy and cirrhotic patients. Acad Radiol 10:869–876

    Article  PubMed  Google Scholar 

  80. Paltiel HJ, Kalish LA, Susaeta RA, Frausher F, O’Kane PL, Freitas-Filho LG (2006) Pulse inversion US imaging of testicular ischemia: Quantitative and qualitative analyses in a rabbit model. Radiology 239:718–729

    Article  PubMed  Google Scholar 

  81. Wei K, Le E, Bin JP, Coggins M, Thorpe J, Kaul S (2001) Quantification of renal blood flow with contrast-enhanced ultrasound. J Am Coll Cardiol 37(4):1135–1140

    Article  PubMed  CAS  Google Scholar 

  82. Kim JH, Eun HW, Lee HJ, Goo DE, Choi DL (2005) Clinical use of renal perfusion imaging by means of harmonic sonography with a microbubble contrast agent in patients after renal transplantation: preliminary study. J Ultrasound Med 24(6):755–762

    PubMed  Google Scholar 

  83. Catalano O, Cusati B, Nunziata A, Siani A (2006) Active abdominal bleeding: contrast-enhanced sonography. Abdom Imaging 31(1):9–16

    Article  PubMed  CAS  Google Scholar 

  84. Napoli V, Bargellini I, Sardella SG et al (2004) Abdominal aortic aneurysm: contrast-enhanced US for missed endoleaks after endoluminal repair. Radiology 233:217–225

    Article  PubMed  Google Scholar 

  85. Dill-Macky M (2006) Aortic endografts: Detecting endoleaks using contrast-enhanced ultrasound. Ultrasound Q 22(1):49–52

    PubMed  Google Scholar 

  86. Thorelius L (2004) Contrast-enhanced ultrasound in trauma. Eur Radiol 14(Suppl 8):P43–P52

    PubMed  Google Scholar 

  87. Catalano O, Lobianco R, Mattace Raso M, Siani A (2005) Blunt hepatic trauma: evaluation with contrast-enhanced sonography: sonographic findings and clinical application. J Ultrasound Med 24(3):299–310

    PubMed  Google Scholar 

  88. Valentino M, Serra C, Zironi G, De Luca C, Pavlica P, Barozzi L (2006) Blunt abdominal trauma: emergency contrast-enhanced sonography for detection of solid organ injuries. AJR Am J Roentgenol 186:1361–1367

    Article  PubMed  Google Scholar 

  89. Oldenburg A, Hohmann J, Skrok J, Albrecht T (2004) Imaging of paediatric splenic injury with contrast-enhanced ultrasonography. Pediatr Radiol 34:351–354

    Article  PubMed  Google Scholar 

  90. Poletti PA, Platon A, Becker CD et al (2004) Blunt abdominal trauma: Does the use of a second generation sonographic contrast agent help to detect solid organs injuries? AJR Am J Roentgenol 183:1293–1301

    PubMed  Google Scholar 

  91. Takeshima K, Kumada K, Toyoda H et al (2005) Comparison of IV Contrast-enhanced sonography and histopathology of pancreatic cancer. AJR Am J Roentgenol 185:1193–1200

    Article  PubMed  Google Scholar 

  92. D’Onofrio M, Zamboni G, Tognolini A, Malago R, Faccioli N, Frulloni L, Pozzi Mucelli R (2006) Mass-forming pancreatitis: Value of contrast-enhanced ultrasonography. World J Gastroenterol 14(12):4181–4184

    Google Scholar 

  93. D’Onofrio M, Mansueto G, Vasori S, Falconi M, Procacci C (2003) Contrast-enhanced ultrasonographic detection of small pancreatic insulinoma. J Ultrasound Med 22(4):413–417

    PubMed  Google Scholar 

  94. Maconi G, Bianchi Porro G (2005) Intestinal pathology. In: Quaia E (ed) Contrast media in ultrasonography: Basic principles and clinical applications. Springer, Berlin Heidelberg New York, pp 349–358

    Chapter  Google Scholar 

  95. Marret H, Sauget S, Giraudeau B, Brewer M, Ranger-Moore J, Body G, Tranquart F (2004) Contrast-enhanced sonography helps in discrimination of benign from malignant adnexal masses. J Ultrasound Med 23:1629–1639

    PubMed  Google Scholar 

  96. Abramowicz JS (2005) Ultrasonographic contrast media: has the time come in obstetrics and gynecology? J Ultrasound Med 24:517–531

    PubMed  Google Scholar 

  97. Ascenti G, Zimbaro G, Mazziotti S et al (2004) Harmonic US imaging of vesicoureteric reflux in children: usefulness of a second generation US contrast agent. Pediatr Radiol 34:481–487

    Article  PubMed  Google Scholar 

  98. Rubaltelli L, Khadivi Y, Tregnaghi A et al (2004) Evaluation of lymph node perfusion using continuous mode harmonic ultrasonography with a second-generation contrast agent. J Ultrasound Med 23(6):829–836

    PubMed  Google Scholar 

  99. Cassano E, Rizzo S,Bozzini A, Menna S, Bellomi M (2006) Contrast enhanced ultrasound of breast cancer. Cancer Imaging 31(6):4–6

    Article  Google Scholar 

  100. Klauser A, Demharter J, De Marchi A et al (2005) Contrast enhanced gray-scale sonography in assessment of joint vascularity in rheumatoid arthritis: results from the IACUS study group. Eur Radiol 15(12):2404–2410

    Article  PubMed  Google Scholar 

  101. Halpern EJ, Frausher F, Rosemberg M, Gomella LG (2002) Directed biopsy during contrast-enhanced sonography of the prostate. AJR Am J Roentgenol 178:915–919

    PubMed  Google Scholar 

  102. Holscher T, Wilkening WG, Lyden PD, Mattrey RF (2005) Transcranial ultrasound angiography (T USA): a new approach for contrast specific imaging of intracranial arteries. Ultrasound Med Biol 31(8):1001–1006

    Article  PubMed  Google Scholar 

  103. Sidhu PS, Allan PL, Cattin F et al (2006) Diagnostic efficacy of SonoVue, a second generation contrast agent, in the assessment of extracranial carotid or peripheral arteries using colour and spectral Doppler ultrasound: a multicentre study. Br J Radiol 79(937):44–51

    Article  PubMed  CAS  Google Scholar 

  104. Lindner JR, Song J, Xu F et al (2000) Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation 102:2745–2750

    PubMed  CAS  Google Scholar 

  105. Leong-Poi H, Christiansen JP, Klibanov AL et al (2003) Non-invasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha (\({\text{ $ \nu $ }}\)) integrins. Circulation 107:455–460

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Quaia.

Appendix-Mathematical models for parenchymal perfusion quantitation

Appendix-Mathematical models for parenchymal perfusion quantitation

The negative exponential function [69] has the form \({\text{y = A}}{\left( {{\text{1 - e}}^{{{\text{ - $ \alpha $ t}}}} } \right)} + {\text{C}}\), where A= the amplitude of the curve above baseline, α= the initial slope of the curve, and C= the intensity at baseline (the zero crossing point of the y-axis), and it is based on a single compartment model. The slope of the first ascending curve is related to microbubble velocity, while the plateau phase is related to fractional blood volume. Limitations of this model include the assumption of a constant concentration of microbubbles entering the region of interest (ROI) immediately after the destruction pulse and the neglect of the different directions of the vessels inside the examined ROI.

The sigmoid function [70] describes a curve with a low initial slope that increases secondarily to an inflexion point and has the form of \( C_{n} {\left( t \right)} = \frac{{C_{0} }} {{{\left( {1 + \tau \lambda } \right)}^{n} }} \times {\left[ {1 - {\left( {1 + {\sum\limits_{i = 1}^{n - 1} {\frac{{\beta ^{i} t^{i} }} {{i!}}} }} \right)}e^{{ - \beta t}} } \right]} \), where Cn(t) is the refilling evolution of the microbubble concentration in an ROI, C0 is the concentration of microbubbles in blood vessels that enter the ROI (number of microbubbles per liter), which is assumed to be constant with time, t is time, λ represents the fraction of microbubbles destroyed by the US beam per second, which is assumed to be constant, 1/τ = F/Vb where F is the rate of the inflow (equals to the rate of outflow) and Vb is the volume of flow in the ROI, and β is (1 + τλ)/τ. This model is based on the assumption that microbubble destruction actually occurs in the feeding vessels that reach the ROI and that microbubbles present a constant concentration in the circulation.

The multivessel model [71, 72] takes into account the different directions and different amounts of blood flow that are found in vessels inside the ROI. After the microbubble destruction by high transmit power insonation, the replenishment is initially linear with time. Once the vessels in the ROI that are perpendicular to the US section and that demonstrate the maximum blood flow velocity of all vessels are completely refilled, a nonlinear increase in echo-signal intensity occurs and is followed by saturation to maximum. The blood volume is then proportional to the maximum plateau of the replenishment curve, and the blood flow velocity (v) can be obtained as \( v = {d \times m} \mathord{\left/ {\vphantom {{d \times m} {{\left( {2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3\,\max } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3\,\max } \right)}} \), where d is the US beam width, m is the slope of the initial linear increase of the replenishment curve starting at zero, and max is the maximum of the replenishment curve.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quaia, E. Microbubble ultrasound contrast agents: an update. Eur Radiol 17, 1995–2008 (2007). https://doi.org/10.1007/s00330-007-0623-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0623-0

Keywords

Navigation