Skip to main content
Log in

Distinguishing enhancing from nonenhancing renal masses with dual-source dual-energy CT: iodine quantification versus standard enhancement measurements

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

To compare the diagnostic accuracy of iodine quantification and standard enhancement measurements in distinguishing enhancing from nonenhancing renal masses.

Materials and methods

The Institutional Review Board approved this retrospective study conducted from data found in institutional patient databases and archives. Seventy-two renal masses were characterised as enhancing or nonenhancing using standard enhancement measurements (in HU) and iodine quantification (in mg/ml). Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of standard enhancement measurements and iodine quantification were calculated from χ 2 tests of contingency with histopathology or imaging follow-up as the reference standard. Difference in accuracy was assessed by means of McNemar analysis.

Results

Sensitivity, specificity, PPV, NPV and diagnostic accuracy for standard enhancement measurements and iodine quantification were 77.7 %, 100 %, 100 %, 81.8 %, 89 % and 100 %, 94.4 %, 94.7, 100 % and 97 %, respectively. The McNemar analysis showed that the accuracy of iodine quantification was significantly better (P < 0.001) than that of standard enhancement measurements.

Conclusion

Compared with standard enhancement measurements, whole-tumour iodine quantification is more accurate in distinguishing enhancing from nonenhancing renal masses.

Key Points

Enhancement of renal lesions is important when differentiating benign from malignant tumours.

Dual-energy CT offers measurement of iodine uptake rather than mere enhancement values.

Whole-tumour iodine quantification seems more accurate than standard CT enhancement measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CT:

Computed tomography

HU:

Hounsfield units

RCC:

Renal cell carcinoma

MDCT:

Multidetector CT

ROI:

Region of interest

Mg/ml:

Milligram per millilitre

SD:

Standard deviation

FOV:

Field of view

TUE:

True unenhanced images

CI:

Confidence interval

References

  1. Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics. CA Cancer J Clin 61:212–236

    Article  PubMed  Google Scholar 

  2. Tsui KH, Shvarts O, Smith RB et al (2000) Renal cell carcinoma: prognostic significance of incidentally detected tumors. J Urol 163:426–430

    Article  PubMed  CAS  Google Scholar 

  3. Birnbaum BA, Jacobs JE, Ramchandani P (1996) Multiphasic renal CT: comparison of renal mass enhancement during the corticomedullary and nephrographic phases. Radiology 200:753–758

    PubMed  CAS  Google Scholar 

  4. Israel GM, Bosniak MA (2005) How I do it: evaluating renal masses. Radiology 236:441–450

    Article  PubMed  Google Scholar 

  5. Israel GM, Silverman SG (2011) The incidental renal mass. Radiol Clin North Am 49:369–383

    Article  PubMed  Google Scholar 

  6. Graser A, Becker CR, Staehler M et al (2010) Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Invest Radiol 45:399–405

    PubMed  Google Scholar 

  7. Millet I, Curros Doyon F, Hoa D et al (2011) Characterization of small solid renal lesions: can benign and malignant tumors be differentiated with CT? AJR Am J Roentgenol 197:887–896

    Article  PubMed  Google Scholar 

  8. Chandarana H, Megibow AJ, Cohen BA et al (2011) Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. AJR Am J Roentgenol 196:W693–W700

    Article  PubMed  Google Scholar 

  9. Birnbaum BA, Maki DD, Chakraborty DP, Jacobs JE, Babb JS (2002) Renal cyst pseudoenhancement: evaluation with an anthropomorphic body CT phantom. Radiology 225:83–90

    Article  PubMed  Google Scholar 

  10. Birnbaum BA, Hindman N, Lee J, Babb JS (2007) Renal cyst pseudoenhancement: influence of multidetector CT reconstruction algorithm and scanner type in phantom model. Radiology 244:767–775

    Article  PubMed  Google Scholar 

  11. Birnbaum BA, Hindman N, Lee J et al (2007) Multidetector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology 242:109–119

    Article  PubMed  Google Scholar 

  12. Fletcher JG, Takahashi N, Hartman R et al (2009) Dual-energy and dual-source CT: is there a role in the abdomen and pelvis? Radiol Clin North Am 47:41–57

    Article  PubMed  Google Scholar 

  13. Brown CL, Hartman RP, Dzyubak OP et al (2009) Dual-energy CT iodine overlay technique for characterization of renal masses as cyst or solid: a phantom feasibility study. Eur Radiol 19:1289–1295

    Article  PubMed  CAS  Google Scholar 

  14. Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS (2008) Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 249:671–681

    Article  PubMed  Google Scholar 

  15. Ascenti G, Mazziotti S, Mileto A et al (2012) Dual-source dual-energy CT evaluation of complex cystic renal masses. AJR Am J Roentgenol 199:1026–1034

    Article  PubMed  Google Scholar 

  16. Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  17. Petersilka M, Bruder H, Krauss B et al (2008) Technical principles of dual source CT. Eur J Radiol 68:362–368

    Article  PubMed  Google Scholar 

  18. Graser A, Johnson TR, Hecht EM et al (2009) Dual-Energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252:433–440

    Article  PubMed  Google Scholar 

  19. Neville AM, Gupta RJ, Miller CM, Merkle EM, Paulson EK, Boll DT (2011) Detection of renal lesion enhancement with dual-energy multidetector CT. Radiology 259:173–183

    Article  PubMed  Google Scholar 

  20. Graser A, Johnson TR, Chandarana H, Macari M (2009) Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol 19:13–23

    Article  PubMed  Google Scholar 

  21. Ascenti G, Mileto A, Gaeta M, Blandino A, Mazziotti S, Scribano E (2012) Single-phase dual-energy CT urography in the evaluation of haematuria. Clin Radiol. [Epub ahead of print] doi:10.1016/j.crad.2012.11.001

  22. Mileto A, Mazziotti S, Gaeta M et al (2012) Pancreatic dual-source dual-energy CT: is it time to discard unenhanced imaging? Clin Radiol 67:334–339

    Article  PubMed  Google Scholar 

  23. Ascenti G, Mazziotti S, Lamberto S et al (2011) Dual-energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: usefulness of colored iodine overlay. AJR Am J Roentgenol 196:1408–1414

    Article  PubMed  Google Scholar 

  24. Israel GM, Bosniak MA (2008) Pitfalls in renal mass evaluation and how to avoid them. Radiographics 28:1325–1338

    Article  PubMed  Google Scholar 

  25. Heneghan JP, Spielmann AL, Sheafor DH, Kliewer MA, De Long DM, Nelson RC (2002) Pseudoenhancement of simple renal cysts: a comparison of single and multidetector helical CT. J Comput Assist Tomogr 26:90–94

    Article  PubMed  Google Scholar 

  26. Maki DD, Birnbaum BA, Chakraborty DP, Jacobs JE, Carvalho BM, Herman GT (1999) Renal cyst pseudoenhancement: beam-hardening effects on CT numbers. Radiology 213:468–472

    PubMed  CAS  Google Scholar 

  27. Abdulla C, Kalra MK, Saini S et al (2002) Pseudoenhancement of simulated renal cysts in a phantom using different multidetector CT scanners. AJR Am J Roentgenol 179:1473–1476

    Article  PubMed  Google Scholar 

  28. Bosniak MA, Rofsky NM (1996) Problems in the detection and characterization of small renal masses. Radiology 200:286–287

    PubMed  CAS  Google Scholar 

  29. Herts BR, Coll DM, Novick AC et al (2002) Enhancement characteristics of papillary renal neoplasms revealed on triphasic helical CT of the kidneys. AJR Am J Roentgenol 178:367–372

    Article  PubMed  Google Scholar 

  30. Israel GM, Bosniak MA (2003) Follow-up CT of moderately complex cystic lesions of the kidney (Bosniak category IIF). AJR Am J Roentgenol 181:627–633

    Article  PubMed  Google Scholar 

  31. Kaza R, Caoili EM, Cohan RH, Platt JF (2011) Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltage-switching dual-energy CT. AJR Am J Roentgenol 197:1375–1381

    Article  PubMed  Google Scholar 

  32. Jinzaki M, McTavish JD, Zou KH, Judy PF, Silverman SG (2004) Evaluation of small (≤ 3 cm) renal masses with MDCT: benefits of thin overlapping reconstructions. AJR Am J Roentgenol 183:1223–1228

    Article  Google Scholar 

Download references

Acknowledgments

We thank Bernhard Krauss who is an employee of Siemens AG for providing the Syngo Dual Energy software. He had no control of the data in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achille Mileto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ascenti, G., Mileto, A., Krauss, B. et al. Distinguishing enhancing from nonenhancing renal masses with dual-source dual-energy CT: iodine quantification versus standard enhancement measurements. Eur Radiol 23, 2288–2295 (2013). https://doi.org/10.1007/s00330-013-2811-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2811-4

Keywords

Navigation