Skip to main content
Log in

Primary central nervous system lymphoma and atypical glioblastoma: differentiation using the initial area under the curve derived from dynamic contrast-enhanced MR and the apparent diffusion coefficient

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the ability of the initial area under the curve (IAUC) derived from dynamic contrast-enhanced MR imaging (DCE-MRI) and apparent diffusion coefficient (ADC) in differentiating between primary central nervous system lymphoma (PCNSL) and atypical glioblastoma (GBM).

Methods

We retrospectively identified 19 patients with atypical GBM (less than 13 % necrosis of the enhancing tumour), and 23 patients with PCNSL. The histogram parameters of IAUC at 30, 60, 90 s (IAUC30, IAUC60, and IAUC90), and ADC were compared between PCNSL and GBM. The diagnostic performances and added values of the IAUC and ADC for differentiating between PCNSL and GBM were evaluated. Interobserver agreement was assessed via intraclass correlation coefficient (ICC).

Results

The IAUC and ADC parameters were higher in GBM than in PCNSL. The 90th percentile (p90) of IAUC30 and 10th percentile (p10) of ADC showed the best diagnostic performance. Adding p90 of IAUC30 to p10 of ADC improved the differentiation between PCNSL and GBM (area under the ROC curve [AUC] = 0.886), compared to IAUC30 or ADC alone (AUC = 0.789 and 0.744; P < 0.05 for all). The ICC was 0.96 for p90 of IAUC30.

Conclusions

The IAUC may be a useful parameter together with ADC for differentiating between PCNSL and atypical GBM.

Key Points

High reproducibility is essential for practical implementation of advanced MRI parameters.

IAUC and ADC are highly reproducible parameters.

IAUC values were higher in atypical GBM than in PCNSL.

Adding IAUC to ADC improved the differentiation between PCNSL and GBM.

IAUC with ADC are useful for differentiating PCNSL from GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADC:

apparent diffusion coefficient

AUC:

area under the receiver operating characteristic curve

DCE:

dynamic contrast-enhanced

DSC:

dynamic susceptibility contrast-enhanced

DTI:

diffusion tensor imaging

GBM:

glioblastoma

IAUC:

initial area under the curve

PCNSL:

primary central nervous system lymphoma

p10:

10th percentile

p90:

90th percentile

ROI:

region of interest

References

  1. Schlegel U (2009) Primary CNS lymphoma. Ther Adv Neurol Disord 2:93–104

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  3. Haldorsen IS, Espeland A, Larsson E-M (2011) Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. AJNR Am J Neuroradiol 32:984–992

    Article  CAS  PubMed  Google Scholar 

  4. Al-Okaili RN, Krejza J, Woo JH et al (2007) Intraaxial Brain Masses: MR Imaging–based Diagnostic Strategy—Initial Experience. Radiology 243:539–550

    Article  PubMed  Google Scholar 

  5. Kickingereder P, Wiestler B, Sahm F et al (2014) Primary Central Nervous System Lymphoma and Atypical Glioblastoma: Multiparametric Differentiation by Using Diffusion-, Perfusion-, and Susceptibility-weighted MR Imaging. Radiology 272:843–850

    Article  PubMed  Google Scholar 

  6. Kickingereder P, Sahm F, Wiestler B et al (2014) Evaluation of Microvascular Permeability with Dynamic Contrast-Enhanced MRI for the Differentiation of Primary CNS Lymphoma and Glioblastoma: Radiologic-Pathologic Correlation. Am J Neuroradiol 35:1503–1508

    Article  CAS  PubMed  Google Scholar 

  7. Toh C-H, Castillo M, Wong A-C et al (2008) Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging. Am J Neuroradiol 29:471–475

    Article  PubMed  Google Scholar 

  8. Toh CH, Wei K-C, Chang C-N et al (2013) Differentiation of Primary Central Nervous System Lymphomas and Glioblastomas: Comparisons of Diagnostic Performance of Dynamic Susceptibility Contrast-Enhanced Perfusion MR Imaging without and with Contrast-Leakage Correction. Am J Neuroradiol 34:1145–1149

    Article  CAS  PubMed  Google Scholar 

  9. Paulson ES, Schmainda KM (2008) Comparison of Dynamic Susceptibility-weighted Contrast-enhanced MR Methods: Recommendations for Measuring Relative Cerebral Blood Volume in Brain Tumors. Radiology 249:601–613

    Article  PubMed  PubMed Central  Google Scholar 

  10. Prah MA, Stufflebeam SM, Paulson ES et al (2015) Repeatability of Standardized and Normalized Relative CBV in Patients with Newly Diagnosed Glioblastoma. Am J Neuroradiol 36:1654–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Essock-Burns E, Phillips JJ, Molinaro AM et al (2013) Comparison of DSC-MRI post-processing techniques in predicting microvascular histopathology in patients newly diagnosed with GBM. J Magn Reson Imaging 38:388–400

    Article  PubMed  Google Scholar 

  12. Kudo K, Christensen S, Sasaki M et al (2013) Accuracy and Reliability Assessment of CT and MR Perfusion Analysis Software Using a Digital Phantom. Radiology 267:201–211

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chung WJ, Kim HS, Kim N et al (2013) Recurrent Glioblastoma: Optimum Area under the Curve Method Derived from Dynamic Contrast-enhanced T1-weighted Perfusion MR Imaging. Radiology 269:561–568

    Article  PubMed  Google Scholar 

  14. Cheng H-LM (2009) Improved correlation to quantitative DCE-MRI pharmacokinetic parameters using a modified initial area under the uptake curve (mIAUC) approach. J Magn Reson Imaging 30:864–872

    Article  PubMed  Google Scholar 

  15. Beuzit L, Eliat P-A, Brun V et al (2015) Dynamic contrast-enhanced MRI: Study of inter-software accuracy and reproducibility using simulated and clinical data. J Magn Reson Imaging. doi:10.1002/jmri.25101

    PubMed  Google Scholar 

  16. Tietze A, Mouridsen K, Mikkelsen IK (2015) The impact of reliable prebolus T 1 measurements or a fixed T 1 value in the assessment of glioma patients with dynamic contrast enhancing MRI. Neuroradiology 57:561–572

    Article  PubMed  Google Scholar 

  17. Fedorov A, Fluckiger J, Ayers GD et al (2014) A comparison of two methods for estimating DCE-MRI parameters via individual and cohort based AIFs in prostate cancer: A step towards practical implementation. Magn Reson Imaging 32:321–329

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hamilton JD, Lin J, Ison C et al (2015) Dynamic Contrast-Enhanced Perfusion Processing for Neuroradiologists: Model-Dependent Analysis May Not Be Necessary for Determining Recurrent High-Grade Glioma versus Treatment Effect. Am J Neuroradiol 36:686–693

    Article  CAS  PubMed  Google Scholar 

  19. Narang J, Jain R, Arbab AS et al (2011) Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion. Neuro-Oncol 13:1037–1046

    Article  PubMed  PubMed Central  Google Scholar 

  20. Akisik MF, Sandrasegaran K, Bu G et al (2010) Pancreatic Cancer: Utility of Dynamic Contrast-enhanced MR Imaging in Assessment of Antiangiogenic Therapy. Radiology 256:441–449

    Article  PubMed  Google Scholar 

  21. Zahra MA, Tan LT, Priest AN et al (2009) Semiquantitative and Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging Measurements Predict Radiation Response in Cervix Cancer. Int J Radiat Oncol 74:766–773

    Article  Google Scholar 

  22. Rieber A, Brambs H-J, Gabelmann A et al (2002) Breast MRI for monitoring response of primary breast cancer to neo-adjuvant chemotherapy. Eur Radiol 12:1711–1719

    Article  CAS  PubMed  Google Scholar 

  23. Park JE, Kim HS, Goh MJ et al (2015) Pseudoprogression in Patients with Glioblastoma: Assessment by Using Volume-weighted Voxel-based Multiparametric Clustering of MR Imaging Data in an Independent Test Set. Radiology 275:792–802

    Article  PubMed  Google Scholar 

  24. Bisdas S, Naegele T, Ritz R et al (2011) Distinguishing recurrent high-grade gliomas from radiation injury: a pilot study using dynamic contrast-enhanced MR imaging. Acad Radiol 18:575–583

    Article  PubMed  Google Scholar 

  25. Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro-Oncol 17:iv1–iv62

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lee HY, Kim HS, Park JW et al (2013) Atypical Imaging Features of Epstein-Barr Virus–Positive Primary Central Nervous System Lymphomas in Patients without AIDS. Am J Neuroradiol 34:1562–1567

    Article  CAS  PubMed  Google Scholar 

  27. Kitai R, Matsuda K, Adachi E et al (2010) Epstein-Barr Virus-Associated Primary Central Nervous System Lymphoma in the Japanese Population. Neurol Med Chir (Tokyo) 50:114–118

    Article  Google Scholar 

  28. Geddes JF, Bhattacharjee MB, Savage K et al (1992) Primary cerebral lymphoma: a study of 47 cases probed for Epstein-Barr virus genome. J Clin Pathol 45:587–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krogh-Jensen M, Johansen P, D’amore F (1998) Primary Central Nervous System Lymphomas in Immunocompetent Individuals: Histology, Epstein-Barr Virus Genome, Ki-67 Proliferation Index, p53 and bcl-2 Gene Expression. Leuk Lymphoma 30:131–142

    Article  CAS  PubMed  Google Scholar 

  30. Pencina MJ, D’ Agostino RB, D’ Agostino RB, Vasan RS (2008) Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Stat Med 27:157–172

    Article  PubMed  Google Scholar 

  31. Pencina MJ, D’Agostino RB, Steyerberg EW (2011) Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 30:11–21

    Article  PubMed  Google Scholar 

  32. Warnke PC, Timmer J, Ostertag CB, Kopitzki K (2005) Capillary physiology and drug delivery in central nervous system lymphomas. Ann Neurol 57:136–139

    Article  PubMed  Google Scholar 

  33. Walker-Samuel S, Leach MO, Collins DJ (2006) Evaluation of response to treatment using DCE-MRI: the relationship between initial area under the gadolinium curve (IAUGC) and quantitative pharmacokinetic analysis. Phys Med Biol 51:3593

    Article  CAS  PubMed  Google Scholar 

  34. Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Seung-Koo Lee. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was waived by the Institutional Review Board. Some study subjects or cohorts have been previously reported in the American Journal of Neuroradiology and Radiology as the following:

Choi YS, Kim DW, Lee S-K, et al (2015) The Added Prognostic Value of Preoperative Dynamic Contrast-Enhanced MRI Histogram Analysis in Patients with Glioblastoma: Analysis of Overall and Progression-Free Survival. AJNR Am J Neuroradiol 36:2235–2241.

Choi YS, Ahn SS, Kim DW, et al (2016) Incremental Prognostic Value of ADC Histogram Analysis over MGMT Promoter Methylation Status in Patients with Glioblastoma. Radiology doi: 10.1148/radiol.2016151913

Methodology: retrospective, observational, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Koo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y.S., Lee, HJ., Ahn, S.S. et al. Primary central nervous system lymphoma and atypical glioblastoma: differentiation using the initial area under the curve derived from dynamic contrast-enhanced MR and the apparent diffusion coefficient. Eur Radiol 27, 1344–1351 (2017). https://doi.org/10.1007/s00330-016-4484-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4484-2

Keywords

Navigation