Skip to main content
Log in

Repeatability and reproducibility of ADC measurements: a prospective multicenter whole-body-MRI study

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Multicenter oncology trials increasingly include MRI examinations with apparent diffusion coefficient (ADC) quantification for lesion characterization and follow-up. However, the repeatability and reproducibility (R&R) limits above which a true change in ADC can be considered relevant are poorly defined. This study assessed these limits in a standardized whole-body (WB)-MRI protocol.

Methods

A prospective, multicenter study was performed at three centers equipped with the same 3.0-T scanners to test a WB-MRI protocol including diffusion-weighted imaging (DWI). Eight healthy volunteers per center were enrolled to undergo test and retest examinations in the same center and a third examination in another center. ADC variability was assessed in multiple organs by two readers using two-way mixed ANOVA, Bland-Altman plots, coefficient of variation (CoV), and the upper limit of the 95% CI on repeatability (RC) and reproducibility (RDC) coefficients.

Results

CoV of ADC was not influenced by other factors (center, reader) than the organ. Based on the upper limit of the 95% CI on RC and RDC (from both readers), a change in ADC in an individual patient must be superior to 12% (cerebrum white matter), 16% (paraspinal muscle), 22% (renal cortex), 26% (central and peripheral zones of the prostate), 29% (renal medulla), 35% (liver), 45% (spleen), 50% (posterior iliac crest), 66% (L5 vertebra), 68% (femur), and 94% (acetabulum) to be significant.

Conclusions

This study proposes R&R limits above which ADC changes can be considered as a reliable quantitative endpoint to assess disease or treatment-related changes in the tissue microstructure in the setting of multicenter WB-MRI trials.

Key Points

• The present study showed the range of R&R of ADC in WB-MRI that may be achieved in a multicenter framework when a standardized protocol is deployed.

• R&R was not influenced by the site of acquisition of DW images.

• Clinically significant changes in ADC measured in a multicenter WB-MRI protocol performed with the same type of MRI scanner must be superior to 12% (cerebrum white matter), 16% (paraspinal muscle), 22% (renal cortex), 26% (central zone and peripheral zone of prostate), 29% (renal medulla), 35% (liver), 45% (spleen), 50% (posterior iliac crest), 66% (L5 vertebra), 68% (femur), and 94% (acetabulum) to be detected with a 95% confidence level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5.

Similar content being viewed by others

Abbreviations

95% CI:

95% confidence interval

ADC:

Apparent diffusion coefficient

CoV:

Coefficient of variation

DICOM:

Digital Imaging and Communications in Medicine

DWI:

Diffusion-weighted imaging

LoA:

Limits of agreement

R&R:

Repeatability and reproducibility

RC:

Repeatability coefficient

RDC:

Reproducibility coefficient

ROI:

Region of interest

WB:

Whole body

References

  1. Vilanova JC, García-Figueiras R, Luna A, Baleato-González S, Tomás X, Narváez JA (2019) Update on whole-body MRI in musculoskeletal applications. Semin Musculoskelet Radiol 23:312–323

    Article  PubMed  Google Scholar 

  2. Kalus S, Saifuddin A (2019) Whole-body MRI vs bone scintigraphy in the staging of Ewing sarcoma of bone: a 12-year single-institution review. Eur Radiol 29:5700–5570

    Article  PubMed  Google Scholar 

  3. Lecouvet FE, Van Nieuwenhove S, Jamar F, Lhommel R, Guermazi A, Pasoglou VP (2018) Whole-Body MR imaging: the novel, “intrinsically hybrid,” approach to metastases, myeloma, lymphoma, in bones and beyond. PET Clin 13:505–522

    Article  PubMed  Google Scholar 

  4. Pasoglou V, Michoux N, Larbi A, Van Nieuwenhove S, Lecouvet F (2018) Whole body MRI and oncology: recent major advances. Br J Radiol 91:20170664

    Article  PubMed  PubMed Central  Google Scholar 

  5. Park HY, Kim KW, Yoon MA et al (2020) Role of whole-body MRI for treatment response assessment in multiple myeloma: comparison between clinical response and imaging response. Cancer Imaging 20:14

    Article  PubMed  Google Scholar 

  6. Latifoltojar A, Punwani S, Lopes A et al (2019) Whole-body MRI for staging and interim response monitoring in paediatric and adolescent Hodgkin’s lymphoma: a comparison with multi-modality reference standard including 18F-FDG-PET-CT. Eur Radiol 29:202–212

    Article  PubMed  Google Scholar 

  7. Winfield JM, Poillucci G, Blackledge MD et al (2018) Apparent diffusion coefficient of vertebral haemangiomas allows differentiation from malignant focal deposits in whole-body diffusion-weighted MRI. Eur Radiol 28:1687–1691

    Article  PubMed  Google Scholar 

  8. Machado Medeiros T, Altmayer S, Watte G (2020) 18F-FDG PET/CT and whole-body MRI diagnostic performance in M staging for non-small cell lung cancer: a systematic review and meta-analysis. Eur Radiol. https://doi.org/10.1007/s00330-020-06703-1

  9. Han SN, Amant F, Michielsen K (2018) Feasibility of whole-body diffusion-weighted MRI for detection of primary tumour, nodal and distant metastases in women with cancer during pregnancy: a pilot study. Eur Radiol 28:1862–1874

    Article  PubMed  Google Scholar 

  10. Tordjman M, Mali R, Madelin G et al (2020) Diagnostic test accuracy of ADC values for identification of clear cell renal cell carcinoma: systematic review and meta-analysis. Eur Radiol. https://doi.org/10.1007/s00330-020-06740-w

  11. Johnston EW, Latifoltojar A, Sidhu HS et al (2019) Multiparametric whole-body 3.0-T MRI in newly diagnosed intermediate- and high-risk prostate cancer: diagnostic accuracy and interobserver agreement for nodal and metastatic staging. Eur Radiol 29:3159–3169

    Article  PubMed  Google Scholar 

  12. Larbi A, Omoumi P, Pasoglou V et al (2019) Whole-body MRI to assess bone involvement in prostate cancer and multiple myeloma: comparison of the diagnostic accuracies of the T1, short tau inversion recovery (STIR), and high B-values diffusion-weighted imaging (DWI) sequences. Eur Radiol 29:4503–4513

    Article  PubMed  Google Scholar 

  13. Lecouvet F, Vander Maren N, Collette L et al (2019) Whole body MRI in spondyloarthritis (SpA): preliminary results suggest that DWI outperforms STIR for lesion detection. Eur Radiol 28:4163–4173

    Article  Google Scholar 

  14. Medeiros TM, Altmayer S, Guilherme Watte G et al (2020) 18F-FDG PET/CT and Whole-body MRI diagnostic performance in M staging for non-small cell lung cancer: a systematic review and meta-analysis. Eur Radiol 30:3641–3649

    Article  Google Scholar 

  15. Kharuzhyk S, Zhavrid E, Dziuban A, Sukolinskaja E, Kalenik O (2020) Comparison of whole-body MRI with diffusion-weighted imaging and PET/CT in lymphoma staging. Eur Radiol 30:3915–3923

    Article  PubMed  Google Scholar 

  16. Lai AYT, Angela Riddell A, Tara Barwick T et al (2020) Interobserver agreement of whole-body magnetic resonance imaging is superior to whole-body computed tomography for assessing disease burden in patients with multiple myeloma. Eur Radiol 30:320–327

    Article  PubMed  Google Scholar 

  17. Donners R, Blackledge M, Tunariu N, Messiou C, Merkle EM, Koh DM (2018) Quantitative whole-body diffusion-weighted MR imaging. Magn Reson Imaging Clin N Am 26:479–494

    Article  PubMed  Google Scholar 

  18. Schmeel FC (2019) Variability in quantitative diffusion-weighted MR imaging (DWI) across different scanners and imaging sites: is there a potential consensus that can help reducing the limits of expected bias? Eur Radiol 29:2243–2245

    Article  PubMed  Google Scholar 

  19. Padhani AR, Makris A, Gall P, Collins DJ, Tunariu N, de Bono JS (2014) Therapy monitoring of skeletal metastases with whole-body diffusion MRI. J Magn Reson Imaging 39:1049–1078

    Article  PubMed  Google Scholar 

  20. Petralia G, Padhani AR, Pricolo P et al (2019) Whole-body magnetic resonance imaging (WB-MRI) in oncology: recommendations and key uses. Radiol Med 124:218–233

    Article  PubMed  Google Scholar 

  21. Sasaki M, Yamada K, Watanabe Y et al (2008) Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology 249:624–630

    Article  PubMed  Google Scholar 

  22. Chenevert TL, Galban CJ, Ivancevic MK et al (2011) Diffusion coefficient measurement using a temperature-controlled fluid for quality control in multicenter studies. J Magn Reson Imaging 34:983–987

    Article  PubMed  PubMed Central  Google Scholar 

  23. Belli G, Busoni S, Ciccarone A et al (2016) Quality assurance multicenter comparison of different MR scanners for quantitative diffusion-weighted imaging. J Magn Reson Imaging 43:213–219

    Article  PubMed  Google Scholar 

  24. Doblas S, Almeida GS, Ble FX et al (2015) Apparent diffusion coefficient is highly reproducible on preclinical imaging systems: evidence from a seven-center multivendor study. J Magn Reson Imaging 42:1759–1764

    Article  PubMed  PubMed Central  Google Scholar 

  25. Winfield JM, Tunariu N, Rata M et al (2017) Extracranial soft-tissue tumors: repeatability of apparent diffusion coefficient estimates from diffusion-weighted MR imaging. Radiology 284:88–99

    Article  PubMed  Google Scholar 

  26. Donati OF, Chong D, Nanz D et al (2014) Diffusion-weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients. Radiology 270:454–463

    Article  PubMed  Google Scholar 

  27. Fedeli L, Belli G, Ciccarone A et al (2018) Dependence of apparent diffusion coefficient measurement on diffusion gradient direction and spatial position - a quality assurance intercomparison study of forty-four scanners for quantitative diffusion-weighted imaging. Phys Med 55:135–141

    Article  PubMed  Google Scholar 

  28. Barbieri S, Donati OF, Froehlich JM, Thoeny HC (2016) Comparison of intravoxel incoherent motion parameters across MR imagers and field strengths: evaluation in upper abdominal organs. Radiology 279:784–794

    Article  PubMed  Google Scholar 

  29. Jafar MM, Parsai A, Miquel ME (2016) Diffusion-weighted magnetic resonance imaging in cancer: reported apparent diffusion coefficients, in-vitro and in-vivo reproducibility. World J Radiol 8:21–49

    Article  PubMed  Google Scholar 

  30. Malyarenko D, Fedorov A, Bell L et al (2018) Toward uniform implementation of parametric map Digital Imaging and Communication in Medicine standard in multisite quantitative diffusion imaging studies. J Med Imaging (Bellingham) 5:011006

    Google Scholar 

  31. Ghosh A, Singh T, Singla V, Bagga R, Khandelwal N (2017) Comparison of absolute apparent diffusion coefficient (ADC) values in ADC maps generated across different postprocessing software: reproducibility in endometrial carcinoma. AJR Am J Roentgenol 209:1312–1320

    Article  PubMed  Google Scholar 

  32. Zeilinger MG, Lell M, Baltzer PA, Dorfler A, Uder M, Dietzel M (2017) Impact of post-processing methods on apparent diffusion coefficient values. Eur Radiol 27:946–955

    Article  PubMed  Google Scholar 

  33. Barnes A, Alonzi R, Blackledge M et al (2018) UK quantitative WB-DWI technical workgroup: consensus meeting recommendations on optimisation, quality control, processing and analysis of quantitative whole-body diffusion-weighted imaging for cancer. Br J Radiol 91:20170577

    Article  PubMed  Google Scholar 

  34. deSouza NM, Winfield JM, Waterton JC et al (2018) Implementing diffusion-weighted MRI for body imaging in prospective multicentre trials: current considerations and future perspectives. Eur Radiol 28:1118–1131

    Article  CAS  PubMed  Google Scholar 

  35. Raunig DL, McShane LM, Pennello G et al (2015) Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment. Stat Methods Med Res 24:27–67

    Article  PubMed  Google Scholar 

  36. QIBA Profile: diffusion-weighted magnetic resonance imaging (DWI) (2017) Available via https://qibawiki.rsna.org/index.php/DWI_Profile_Development_Archive

  37. Pasoglou V, Michoux N, Peeters F et al (2015) Whole-body 3D T1-weighted MR imaging in patients with prostate cancer: feasibility and evaluation in screening for metastatic disease. Radiology 275:155–166

    Article  PubMed  Google Scholar 

  38. Bartlett JW, Frost C (2008) Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet Gynecol 31:466–475

    Article  CAS  PubMed  Google Scholar 

  39. Messiou C, Hillengass J, Delorme S et al (2019) Guidelines for acquisition, interpretation, and reporting of whole-body MRI in myeloma: Myeloma Response Assessment and Diagnosis System (MY-RADS). Radiology 291:5–13

    Article  PubMed  Google Scholar 

  40. Padhani AR, Lecouvet FE, Tunariu N et al (2017) METastasis Reporting and Data System for Prostate Cancer: practical guidelines for acquisition, interpretation, and reporting of whole-body magnetic resonance imaging-based evaluations of multiorgan involvement in advanced prostate cancer. Eur Urol 71(1):81–92

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ellingson BM, Bendszus M, Boxerman J et al (2015) Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro Oncol 17:1188–1198

    PubMed  PubMed Central  Google Scholar 

  42. Malyarenko D, Galban CJ, Londy FJ et al (2013) Multi-system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice-water phantom. J Magn Reson Imaging 37:1238–1246

    Article  PubMed  Google Scholar 

  43. Chenevert TL, Malyarenko DI, Newitt D et al (2014) Errors in quantitative image analysis due to platform-dependent image scaling. Transl Oncol 7:65–71

    Article  PubMed  Google Scholar 

  44. Braithwaite AC, Dale BM, Boll DT, Merkle EM (2009) Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology 250:459–465

    Article  PubMed  Google Scholar 

  45. Metens T, Absil J, Denolin V, Bali MA, Matos C (2016) Liver apparent diffusion coefficient repeatability with individually predetermined optimal cardiac timing and artifact elimination by signal filtering. J Magn Reson Imaging 43:1100–1110

    Article  PubMed  Google Scholar 

  46. Colagrande S, Pasquinelli F, Mazzoni LN, Belli G, Virgili G (2010) MR-diffusion weighted imaging of healthy liver parenchyma: repeatability and reproducibility of apparent diffusion coefficient measurement. J Magn Reson Imaging 31:912–920

    Article  PubMed  Google Scholar 

  47. Blackledge MD, Collins DJ, Tunariu N et al (2014) Assessment of treatment response by total tumor volume and global apparent diffusion coefficient using diffusion-weighted MRI in patients with metastatic bone disease: a feasibility study. PLoS One 9:e91779

    Article  PubMed  Google Scholar 

  48. Dzyubachyk O, Lelieveldt BP, Blaas J, Reijnierse M, Webb A, van der Geest RJ (2013) Automated algorithm for reconstruction of the complete spine from multistation 7T MR data. Magn Reson Med 69:1777–1786

    Article  PubMed  Google Scholar 

  49. Ceranka J, Polfliet M, Lecouvet F, Michoux N, de Mey J, Vandemeulebroucke J (2018) Registration strategies for multi-modal whole-body MRI mosaicing. Magn Reson Med 79:1684–1695

    Article  PubMed  Google Scholar 

  50. Blackledge MD, Tunariu N, Orton MR et al (2016) Inter- and intra-observer repeatability of quantitative whole-body, diffusion-weighted imaging (WBDWI) in metastatic bone disease. PLoS One 11:e0153840

    Article  PubMed  Google Scholar 

  51. Padhani AR, van Ree K, Collins DJ, D’Sa S, Makris A (2013) Assessing the relation between bone marrow signal intensity and apparent diffusion coefficient in diffusion-weighted MRI. AJR Am J Roentgenol 200:163–170

    Article  PubMed  Google Scholar 

  52. García-Figueiras R, Baleato-González S, Padhani AR et al (2019) How clinical imaging can assess cancer biology. Insights Imaging 10:28

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pathak R, Ragheb H, Thacker NA (2017) A data-driven statistical model that estimates measurement uncertainty improves interpretation of ADC reproducibility: a multi-site study of liver metastases. Sci Rep 7:14084

    Article  PubMed  Google Scholar 

  54. Deckers F, De Foer B, Van Mieghem F (2014) Apparent diffusion coefficient measurements as very early predictive markers of response to chemotherapy in hepatic metastasis: a preliminary investigation of reproducibility and diagnostic value. J Magn Reson Imaging 40:448–456

    Article  PubMed  Google Scholar 

  55. Møller JM, Østergaard M, Thomsen HS, Sørensen IJ, Madsen OR, Pedersen SJ (2020) Test-retest repeatability of the apparent diffusion coefficient in sacroiliac joint MRI in patients with axial spondyloarthritis and healthy individuals. Acta Radiol Open 9:2058460120906015

    PubMed  PubMed Central  Google Scholar 

  56. Thoeny HC, De Keyzer F, Oyen RH, Peeters RR (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235:911–917

    Article  PubMed  Google Scholar 

  57. Gibbs P, Pickles MD, Turnbull LW (2007) Repeatability of echo-planar-based diffusion measurements of the human prostate at 3 T. Magn Reson Imaging 25:1423–1429

    Article  PubMed  Google Scholar 

  58. Jacobs MA, Macura KJ, Zaheer A et al (2018) Multiparametric whole-body MRI with diffusion-weighted imaging and ADC mapping for the identification of visceral and osseous metastases from solid tumors. Acad Radiol 25:1405–1414

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lavdas I, Rockall AG, Castelli F et al (2015) Apparent diffusion coefficient of normal abdominal organs and bone marrow from whole-body DWI at 1.5 T: the effect of sex and age. AJR Am J Roentgenol 205:242–250

    Article  PubMed  Google Scholar 

  60. Messiou C, Collins DJ, Morgan VA, Desouza NM (2011) Optimising diffusion weighted MRI for imaging metastatic and myeloma bone disease and assessing reproducibility. Eur Radiol 21:1713–1718

    Article  CAS  PubMed  Google Scholar 

  61. Grech-Sollars M, Hales PW, Miyazaki K et al (2015) Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain. NMR Biomed 28:468–485

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bilgili MY (2012) Reproducibility of apparent diffusion coefficients measurements in diffusion-weighted MRI of the abdomen with different b values. Eur J Radiol 81:2066–2068

    Article  PubMed  Google Scholar 

  63. Miquel ME, Scott AD, Macdougall ND, Boubertakh R, Bharwani N, Rockall AG (2012) In vitro and in vivo repeatability of abdominal diffusion-weighted MRI. Br J Radiol 85:1507–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by Innoviris (Institut pour l’encouragement de la recherche scientifique et de l’innovation de la région Bruxelles-Capitale, Brussels, Belgium; Grant 2013-PFS-EH-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas F. Michoux.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Prof. Frédéric Lecouvet (Université Catholique de Louvain, Radiology Department, Brussels, Belgium).

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

Two of the authors have significant statistical expertise (Laurence Collette, PhD, EORTC; Nicolas Michoux, PhD, UCL).

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• prospective

• observational

• multicenter study

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting information

ESM 1

(DOCX 36.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michoux, N.F., Ceranka, J.W., Vandemeulebroucke, J. et al. Repeatability and reproducibility of ADC measurements: a prospective multicenter whole-body-MRI study. Eur Radiol 31, 4514–4527 (2021). https://doi.org/10.1007/s00330-020-07522-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-020-07522-0

Keywords

Navigation