Skip to main content
Log in

Ground States and Critical Points for Aubry–Mather Theory in Statistical Mechanics

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider several models of networks of interacting particles and prove the existence of quasi-periodic equilibrium solutions. We assume (1) that the network and the interaction among particles are invariant under a group that satisfies some mild assumptions; (2) that the state of each particle is given by a real number; (3) that the interaction is invariant by adding an integer to the state of all the particles at the same time; (4) that the interaction is ferromagnetic and coercive (it favors local alignment and penalizes large local oscillations); and (5) some technical assumptions on the regularity speed of decay of the interaction with the distance. Note that the assumptions are mainly qualitative, so that they cover many of the models proposed in the literature. We conclude (A) that there are minimizing (ground states) quasi-periodic solutions of every frequency and that they satisfy several geometric properties; (B) if the minimizing solutions do not cover all possible values at a point, there is another equilibrium point which is not a ground state. These results generalize basic results of Aubry–Mather theory (take the network and the group to be ℤ). In particular, we provide with a generalization of the celebrated criterion of existence of invariant circles if and only iff the Peierls–Nabarro barrier vanishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angenent, S.B.: Monotone recurrence relations, their Birkhoff orbits and topological entropy. Ergod. Theory Dyn. Syst. 10(1), 15–41 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Aubry, S., Le Daeron, P.Y.: The discrete Frenkel–Kontorova model and its extensions. I. Exact results for the ground-states. Physica D 8(3), 381–422 (1983)

    Article  MathSciNet  Google Scholar 

  • Bangert, V.: Mather sets for twist maps and geodesics on tori. In: Dynamics Reported. Dynam. Report. Ser. Dynam. Systems Appl., vol. 1, pp. 1–56. Wiley, Chichester (1988)

    Google Scholar 

  • Bangert, V.: On minimal laminations of the torus. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 6(2), 95–138 (1989)

    MATH  MathSciNet  Google Scholar 

  • Bass, H., Lubotzky, A.: Tree Lattices. Progress in Mathematics, vol. 176. Birkhäuser, Boston (2001). With appendices by H. Bass, L. Carbone, A. Lubotzky, G. Rosenberg, and J. Tits

    MATH  Google Scholar 

  • Bessi, U.: Many solutions of elliptic problems on ℝn of irrational slope. Commun. Part. Differ. Equ. 30(10–12), 1773–1804 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Bethe, H.A.: Statistical theory of superlattices. Proc. R. Soc. Lond. Ser. A 150, 552–575 (1935)

    Article  MATH  Google Scholar 

  • Blank, M.L.: Metric properties of minimal solutions of discrete periodical variational problems. Nonlinearity 2(1), 1–22 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Blank, M.L.: Chaos and order in the multidimensional Frenkel–Kontorova model. Teor. Mat. Fiz. 85(3), 349–367 (1990)

    MathSciNet  Google Scholar 

  • Braun, O.M., Kivshar, Y.S.: Nonlinear dynamics of the Frenkel–Kontorova model. Phys. Rep. 306(1–2), 108 (1998)

    MathSciNet  Google Scholar 

  • Braun, O.M., Kivshar, Y.S.: Concepts, methods, and applications. In: The Frenkel–Kontorova Model. Texts and Monographs in Physics. Springer, Berlin (2004)

    Google Scholar 

  • Caffarelli, L.A., de la Llave, R.: Planelike minimizers in periodic media. Commun. Pure Appl. Math. 54(12), 1403–1441 (2001)

    Article  MATH  Google Scholar 

  • Caffarelli, L.A., de la Llave, R.: Interfaces of ground states in Ising models with periodic coefficients. J. Stat. Phys. 118(3–4), 687–719 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Calleja, R., de la Llave, R.: Fast numerical computation of quasi-periodic equilibrium states in 1-D statistical mechanics, including twist maps. Nonlinearity 22, 1311–1366 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Candel, A., de la Llave, R.: On the Aubry–Mather theory in statistical mechanics. Commun. Math. Phys. 192(3), 649–669 (1998)

    Article  MATH  Google Scholar 

  • Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52(5), 264–379 (1979)

    Article  MathSciNet  Google Scholar 

  • de la Llave, R.: KAM theory for equilibrium states in 1-D statistical mechanics. Ann. Henri Poincaré 9(5), 835–880 (2008)

    Article  MATH  Google Scholar 

  • de la Llave, R., Valdinoci, E.: Critical points inside the gaps of ground state laminations for some models in statistical mechanics. J. Stat. Phys. 129(1), 81–119 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • de la Llave, R., Valdinoci, E.: Ground states and critical points for generalized Frenkel–Kontorova models in ℤd. Nonlinearity 20(10), 2409–2424 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • de la Llave, R., Valdinoci, E.: Multiplicity results for interfaces of Ginzburg–Landau–Allen–Cahn equations in periodic media. Adv. Math. 215(1), 379–426 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Dicks, W., Dunwoody, M.J.: Groups Acting on Graphs. Cambridge Studies in Advanced Mathematics, vol. 17. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  • Georgii, H.-O.: Gibbs Measures and Phase Transitions. de Gruyter Studies in Mathematics, vol. 9. de Gruyter, Berlin (1988)

    MATH  Google Scholar 

  • Golé, C.: A new proof of the Aubry–Mather’s theorem. Math. Z. 210(3), 441–448 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Golé, C.: Global variational techniques. In: Symplectic Twist Maps. Advanced Series in Nonlinear Dynamics, vol. 18. World Scientific, River Edge (2001)

    Google Scholar 

  • Greene, J.M.: A method for determining a stochastic transition. J. Math. Phys. 20, 1183–1201 (1979)

    Article  Google Scholar 

  • Hale, J.K.: Ordinary Differential Equations, 2nd edn. Krieger, Huntington (1980)

    MATH  Google Scholar 

  • Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications, vol. 54. Cambridge University Press, Cambridge (1995). With a supplementary chapter by A. Katok and L. Mendoza

    MATH  Google Scholar 

  • Koch, H., de la Llave, R., Radin, C.: Aubry–Mather theory for functions on lattices. Discrete Contin. Dyn. Syst. 3(1), 135–151 (1997)

    MATH  Google Scholar 

  • Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1977 edition

    MATH  Google Scholar 

  • Mather, J.N.: Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology 21(4), 457–467 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Mather, J.N.: Nonexistence of invariant circles. Ergod. Theory Dyn. Syst. 4(2), 301–309 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • Mather, J.: A criterion for the nonexistence of invariant circles. Inst. Hautes Études Sci. Publ. Math. 63, 153–204 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Mather, J.N.: Differentiability of the minimal average action as a function of the rotation number. Bol. Soc. Bras. Mat. (N.S.) 21(1), 59–70 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Mather, J.N.: Variational construction of orbits of twist diffeomorphisms. J. Am. Math. Soc. 4(2), 207–263 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Mather, J.N., Forni, G.: Action minimizing orbits in Hamiltonian systems. In: Transition to Chaos in Classical and Quantum Mechanics, Montecatini Terme, 1991. Lecture Notes in Math., vol. 1589, pp. 92–186. Springer, Berlin (1994)

    Chapter  Google Scholar 

  • Morse, H.M.: A fundamental class of geodesics on any closed surface of genus greater than one. Trans. Am. Math. Soc. 26(1), 25–60 (1924)

    Article  MATH  MathSciNet  Google Scholar 

  • Moser, J.: Minimal solutions of variational problems on a torus. Ann. Inst. Henri Poincaré Anal. Non Linéaire 3(3), 229–272 (1986)

    MATH  Google Scholar 

  • Moser, J.: Minimal foliations on a torus. In: Topics in Calculus of Variations, Montecatini Terme, 1987. Lecture Notes in Math., vol. 1365, pp. 62–99. Springer, Berlin (1989)

    Chapter  Google Scholar 

  • Moser, J.: Selected Chapters in the Calculus of Variations. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2003). Lecture notes by Oliver Knill

    MATH  Google Scholar 

  • Petrosyan, A., Valdinoci, E.: Density estimates for a degenerate/singular phase-transition model. SIAM J. Math. Anal. 36(4), 1057–1079 (2005a) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  • Petrosyan, A., Valdinoci, E.: Geometric properties of Bernoulli-type minimizers. Interfaces Free Bound. 7(1), 55–77 (2005b)

    Article  MATH  MathSciNet  Google Scholar 

  • Rabinowitz, P.H., Stredulinsky, E.: Mixed states for an Allen–Cahn type equation. Commun. Pure Appl. Math. 56(8), 1078–1134 (2003). Dedicated to the memory of Jürgen K. Moser

    Article  MATH  MathSciNet  Google Scholar 

  • Rabinowitz, P.H., Stredulinsky, E.: On some results of Moser and of Bangert. Ann. Inst. Henri Poincaré Anal. Non Linéaire 21(5), 673–688 (2004a)

    Article  MATH  MathSciNet  Google Scholar 

  • Rabinowitz, P.H., Stredulinsky, E.: Mixed states for an Allen–Cahn type equation. II. Calc. Var. Part. Differ. Equ. 21(2), 157–207 (2004b)

    MATH  MathSciNet  Google Scholar 

  • Rabinowitz, P.H., Stredulinsky, E.: On some results of Moser and of Bangert. II. Adv. Nonlinear Stud. 4(4), 377–396 (2004)

    MATH  MathSciNet  Google Scholar 

  • Robinson, D.J.S.: A Course in the Theory of Groups. Graduate Texts in Mathematics, vol. 80. Springer, New York (1982)

    MATH  Google Scholar 

  • Ruelle, D.: Rigorous results. In: Statistical Mechanics. World Scientific, River Edge (1999). Reprint of the 1989 edition

    Google Scholar 

  • Serre, J.-P.: Arbres, Malgames, SL 2. Société Mathématique de France, Paris (1977). Avec un sommaire anglais, Rédigé avec la collaboration de Hyman Bass, Astérisque, No. 46

    Google Scholar 

  • Torres, M.: Plane-like minimal surfaces in periodic media with exclusions. SIAM J. Math. Anal. 36(2), 523–551 (2004) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  • Valdinoci, E.: Plane-like minimizers in periodic media: jet flows and Ginzburg–Landau. Ph.D. thesis, University of Texas at Austin (2001). MP_ARC # 01-356

  • Valdinoci, E.: Plane-like minimizers in periodic media: jet flows and Ginzburg–Landau-type functionals. J. Reine Angew. Math. 574, 147–185 (2004)

    MATH  MathSciNet  Google Scholar 

  • Vallet, F.: Thermodynamique unidimensionelle, et structures bidimensionelles de quelques modèles pour des systèmes incommensurables. Ph.D. thesis, Université Pierre-et-Marie-Curie Paris VI (1986)

  • Veselov, A.P.: Integrable maps. Usp. Mat. Nauk 46(5), 3–45 (1991)

    MATH  MathSciNet  Google Scholar 

  • Wehrfritz, B.A.F.: Infinite Linear Groups. An Account of the Group-Theoretic Properties of Infinite Groups of Matrices. Ergebnisse der Matematik und ihrer Grenzgebiete, vol. 76. Springer, New York (1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael de la Llave.

Additional information

Communicated by A. Delshams.

The work of RdlL was supported by NSF grants. The work of EV was supported by GNAMPA Equazioni nonlineari su varietà: proprietà qualitative e classificazione delle soluzioni and MIUR Variational Methods and Nonlinear Differential Equations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Llave, R., Valdinoci, E. Ground States and Critical Points for Aubry–Mather Theory in Statistical Mechanics. J Nonlinear Sci 20, 153–218 (2010). https://doi.org/10.1007/s00332-009-9055-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-009-9055-0

Mathematics Subject Classification (2000)

Navigation