Skip to main content
Log in

On the Relationship Between the One-Corner Problem and the M-Corner Problem for the Vortex Filament Equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we give evidence that the evolution of the vortex filament equation (VFE) for a regular M-corner polygon as initial datum can be explained at infinitesimal times as the superposition of M one-corner initial data. This fact is mainly sustained with the calculation of the speed of the center of mass; in particular, we show that several conjectures made at the numerical level are in agreement with the theoretical expectations. Moreover, due to the spatial periodicity, the evolution of VFE at later times can be understood as the nonlinear interaction of infinitely many filaments, one for each corner; and this interaction turns out to be some kind of nonlinear Talbot effect. We also give very strong numerical evidence of the transfer of energy and linear momentum for the M-corner case; and the numerical experiments carried out provide new arguments that support the multifractal character of the trajectory defined by one of the corners of the initial polygon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arms, R.J., Hama, F.R.: Localized-induction concept on a curved vortex and motion of an elliptic vortex ring. Phys. Fluids 8(4), 553–559 (1965)

    Article  Google Scholar 

  • Banica, V., Vega, L.: On the stability of a singular vortex dynamics. Commun. Math. Phys. 286(2), 593–627 (2009)

    Article  MathSciNet  Google Scholar 

  • Banica, V., Vega, L.: Scattering for 1D cubic NLS and singular vortex dynamics. J. Eur. Math. Soc. (JEMS) 14(1), 209–253 (2012)

    Article  MathSciNet  Google Scholar 

  • Banica, V., Vega, L.: Stability of the Self-similar dynamics of a vortex filament. Arch. Ration. Mech. Anal. 210(3), 673–712 (2013)

    Article  MathSciNet  Google Scholar 

  • Banica, V., Vega, L.: The initial value problem for the Binormal Flow with rough data. Ann. Sci. l’ENS 48(6), 1423–1455 (2015)

    MathSciNet  MATH  Google Scholar 

  • Banica, V., Vega, L.: Singularity formation for the 1-D cubic NLS and the Schrödinger map on \(\mathbb{S}^2\). Commun. Pure Appl. Anal. 17(4), 1317–1329 (2018)

    Article  MathSciNet  Google Scholar 

  • Berry, M.V., Klein, S.: Integer, fractional and fractal Talbot effects. J. Mod. Opt. 43, 2139–2164 (1996)

    Article  MathSciNet  Google Scholar 

  • Buttke, T.F.: A numerical study of superfluid turbulence in the self-induction approximation. J. Comput. Phys. 76(2), 301–326 (1998)

    Article  MathSciNet  Google Scholar 

  • Chen, G., Olver, P.J.: Dispersion of discontinuous periodic waves. Proc. R. Soc. Lond. A 469, 20120407 (2012)

    Article  MathSciNet  Google Scholar 

  • Chen, G., Olver, P.J.: Numerical simulation of nonlinear dispersive quantization. Discrete Contin. Dyn. Syst. 34(3), 991–1008 (2014)

    Article  MathSciNet  Google Scholar 

  • Chousionis, V., Erdoğan, M.B., Tzirakis, N.: Fractal solutions of linear and nonlinear dispersive partial differential equations. Proc. Lond. Math. Soc. 110(3), 543–564 (2015)

    Article  MathSciNet  Google Scholar 

  • Da Rios, L.S.: Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque. Rend. Circ. Mat. Palermo 22(1), 117–135 (1906). (In Italian)

    Article  Google Scholar 

  • de la Hoz, F.: Self-similar solutions for the 1-D Schrödinger map on the hyperbolic plane. Math. Z. 257(1), 61–80 (2007)

    Article  MathSciNet  Google Scholar 

  • de la Hoz, F., García-Cervera, C.J., Vega, L.: A numerical study of the self-similar solutions of the Schrödinger map. SIAM J. Appl. Math. 70(4), 1047–1077 (2009)

    Article  MathSciNet  Google Scholar 

  • de la Hoz, F., Vega, L.: Vortex filament equation for a regular polygon. Nonlinearity 27(12), 3031–3057 (2014)

    Article  MathSciNet  Google Scholar 

  • de la Hoz, F., Vega, L.: The vortex filament equation as a pseudorandom generator. Acta Appl. Math. 138(1), 135–151 (2015)

    Article  MathSciNet  Google Scholar 

  • Erdoğan, M.B., Tzirakis, N.: Talbot effect for the cubic nonlinear Schrödinger equation on the torus. Math. Res. Lett. 20(6), 1081–1090 (2013)

    Article  MathSciNet  Google Scholar 

  • Fonda, E., Meichle, D.P., Ouellette, N.T., Hormoz, S., Lathrop, D.P.: Direct observation of Kelvin waves excited by quantized vortex reconnection. PNAS 111(Suppl. 1), 4707–4710 (2014)

    Article  Google Scholar 

  • Grinstein, F.F., Gutmark, E.J.: Flow control with noncircular jets. Ann. Rev. Fluid Mech. 31, 239–272 (1999)

    Article  Google Scholar 

  • Grinstein, F.F., Gutmark, E.J., Parr, T.: Near field dynamics of subsonic, free square jets. A computational and experimental study. Phys. Fluids 7, 1483–1497 (1995)

    Article  Google Scholar 

  • Gutiérrez, S., Rivas, J., Vega, L.: Formation of singularities and self-similar vortex motion under the localized induction approximation. Commun. PDE 28(5–6), 927–968 (2003)

    Article  MathSciNet  Google Scholar 

  • Hasimoto, H.: A soliton on a vortex filament. J. Fluid Mech. 51(3), 477–485 (1972)

    Article  MathSciNet  Google Scholar 

  • Ishimori, Y.: An integrable classical spin chain. J. Phys. Soc. Jpn. 51(11), 3417–3418 (1982)

    Article  MathSciNet  Google Scholar 

  • Jaffard, S.: The spectrum of singularities of Riemann’s function. Rev. Mat. Iberoam. 12(2), 441–460 (1996)

    Article  MathSciNet  Google Scholar 

  • Jerrard, R.L., Seis, C.: On the vortex filament conjecture for Euler flows. Arch. Ration. Mech. Anal. 224(1), 135–172 (2017)

    Article  MathSciNet  Google Scholar 

  • Jerrard, R.L., Smets, D.: On Schrödinger maps from \(T^1\) to \(S^2\). Ann. Sci. Éc. Norm. Supér. (4) 45(4), 637–680 (2013)

    Article  Google Scholar 

  • Jerrard, R.L., Smets, D.: On the motion of a curve by its binormal curvature. J. Eur. Math. Soc. 17(6), 1487–1515 (2015)

    Article  MathSciNet  Google Scholar 

  • Lakshmanan, M.: The fascinating world of the Landau–Lifshitz–Gilbert equation: an overview. Philos. Trans. R. Soc. A 369, 1280–1300 (2011)

    Article  MathSciNet  Google Scholar 

  • Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flows, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  • Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. NIST and Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  • Olver, P.J.: Dispersive quantization. Am. Math. Mon. 117(7), 599–610 (2010)

    Article  MathSciNet  Google Scholar 

  • Ricca, R.L.: Physical interpretation of certain invariants for vortex filament motion under LIA. Phys. Fluids A 4, 938–944 (1992)

    Article  MathSciNet  Google Scholar 

  • Saffman, P.G.: Vortex Dynamics, Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  • Zhang, Y., Wen, J., Zhu, S.N., Xiao, M.: Nonlinear Talbot effect. Phys. Rev. Lett. 104(18), 183901 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank V. Banica and C. García-Cervera for very enlightening conversations concerning the last two sections of this paper. Part of this work was started while the second author was visiting MSRI, within the New Challenges in PDE 2015 program. We also want to thank the anonymous reviewers for their very valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Vega.

Additional information

Communicated by Alex Kiselev.

This work was supported by an ERCEA Advanced Grant 2014 669689 - HADE, by the MINECO Projects MTM2014-53850-P and SEV-2013-0323, and by the Basque Government Project IT641-13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Hoz, F., Vega, L. On the Relationship Between the One-Corner Problem and the M-Corner Problem for the Vortex Filament Equation. J Nonlinear Sci 28, 2275–2327 (2018). https://doi.org/10.1007/s00332-018-9477-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9477-7

Keywords

Mathematics Subject Classification

Navigation