Skip to main content

Advertisement

Log in

Holocene climate, fire and vegetation dynamics at the treeline in the Northwestern Swiss Alps

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Treelines are expected to rise to higher elevations with climate warming; the rate and extent however are still largely unknown. Here we present the first multi-proxy palaeoecological study from the treeline in the Northwestern Swiss Alps that covers the entire Holocene. We reconstructed climate, fire and vegetation dynamics at Iffigsee, an alpine lake at 2,065 m a.s.l., by using seismic sedimentary surveys, loss on ignition, visible spectrum reflectance spectroscopy, pollen, spore, macrofossil and charcoal analyses. Afforestation with Larix decidua and tree Betula (probably B. pendula) started at ~9,800 cal. b.p., more than 1,000 years later than at similar elevations in the Central and Southern Alps, indicating cooler temperatures and/or a high seasonality. Highest biomass production and forest position of ~2,100–2,300 m a.s.l. are inferred during the Holocene Thermal Maximum from 7,000 to 5,000 cal. b.p. With the onset of pastoralism and transhumance at 6,800–6,500 cal. b.p., human impact became an important factor in the vegetation dynamics at Iffigsee. This early evidence of pastoralism is documented by the presence of grazing indicators (pollen, spores), as well as a wealth of archaeological finds at the nearby mountain pass of Schnidejoch. Human and fire impact during the Neolithic and Bronze Ages led to the establishment of pastures and facilitated the expansion of Picea abies and Alnus viridis. We expect that in mountain areas with land abandonment, the treeline will react quickly to future climate warming by shifting to higher elevations, causing drastic changes in species distribution and composition as well as severe biodiversity losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aerni K (1990) 1000 Jahre Siedlung und Verkehr im schweizerischen Alpenraum. Voraussetzungen und Ergebnisse. In: Aerni K, Egli HR, Fehn K (eds) Siedlungsprozesse an der Höhengrenze der Ökumene am Beispiel der Alpen. Bern, pp 9–42

  • Arno SF, Hammerly RP (1984) Timberline. Mountain and arctic forest frontiers. The Mountaineers, Seattle

    Google Scholar 

  • Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Google Scholar 

  • Berthel N, Schwörer C, Tinner W (2012) Impact of Holocene climate changes on alpine and treeline vegetation at Sanetsch Pass, Bernese Alps, Switzerland. Rev Palaeobot Palynol 174:91–100. doi:10.1016/j.revpalbo.2011.12.007

    Google Scholar 

  • Beug H (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München

    Google Scholar 

  • Birks H, Birks H (2006) Multi-proxy studies in palaeolimnology. Veget Hist Archaeobot 15:235–251. doi:10.1007/s00334-006-0066-6

    Google Scholar 

  • Birks H, Bjune A (2010) Can we detect a west Norwegian tree line from modern samples of plant remains and pollen? Results from the DOORMAT project. Veget Hist Archaeobot 19:325–340. doi:10.1007/s00334-010-0256-0

    Google Scholar 

  • Birks HJB, Gordon AD (1985) Numerical methods in quaternary pollen analysis. Academic Press, London, Orlando

    Google Scholar 

  • Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518. doi:10.1016/j.quageo.2010.01.002

    Google Scholar 

  • Blarquez O, Carcaillet C (2010) Fire, fuel composition and resilience threshold in subalpine ecosystem. PLoS One 5:e12,480

    Google Scholar 

  • Blarquez O, Carcaillet C, Bremond L, Mourier B, Radakovitch O (2009) Trees in the subalpine belt since 1,1700 cal. b.p.: origin, expansion and alteration of the modern forest. Holocene 20:139–146

    Google Scholar 

  • Borten-schlager S (2000) The Iceman’s environment. In: Borten-schlager S, Oeggl K (eds) The Iceman and his Natural Environment, vol 4. Springer, Vienna, pp 11–24

    Google Scholar 

  • Breckle S, Lawlor G, Lawlor D (2002) Walter’s vegetation of the Earth. The ecological systems of the geo-biosphere, 4th edn. Springer, Berlin

    Google Scholar 

  • Burga CA, Klötzli F, Grabherr G (2004) Gebirge der Erde: Landschaft, Klima, Pflanzenwelt. Ulmer, Stuttgart

    Google Scholar 

  • CH2011 (2011) Swiss climate change scenarios CH2011. C2SM, MeteoSwiss, ETH, NCCR Climate, OCCC, Zürich

  • Colombaroli D, Henne PD, Kaltenrieder P, Gobet E, Tinner W (2010) Species responses to fire, climate and human impact at tree line in the Alps as evidenced by palaeo-environmental records and a dynamic simulation model. J Ecol 98:1,346–1,357

    Google Scholar 

  • Colombaroli D, Beckmann M, van der Knaap WO, Curdy P, Tinner W (2013) Changes in biodiversity and vegetation composition in the central Swiss Alps during the transition from pristine forest to first farming. Divers Distrib 19:157–170. doi:10.1111/j.1472-4642.2012.00930.x

    Google Scholar 

  • Conedera M, Tinner W, Neff C, Meurer M, Dickens AF, Krebs P (2009) Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat Sci Rev 28:555–576

    Google Scholar 

  • Cugny C, Mazier F, Galop D (2010) Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity. Veget Hist Archaeobot 19:391–408. doi:10.1007/s00334-010-0242-6

    Google Scholar 

  • Curdy P (2007) Prehistoric settlement in middle and high altitudes in the Upper Rhone Valley (Valais-Vaud, Switzerland): a summary of twenty years of research. Preistoria alpina 42:99–108

    Google Scholar 

  • Das B, Vinebrooke RD, Sanchez-Azofeifa A, Rivard B, Wolfe AP (2005) Inferring sedimentary chlorophyll concentrations with reflectance spectroscopy: a novel approach to reconstructing historical changes in the trophic status of mountain lakes. Can J Fish Aquat Sci 62:1,067–1,078. doi:10.1139/f05-016

    Google Scholar 

  • David F (2010) Expansion of green alder (Alnus alnobetula [Ehrh] K. Koch) in the northern French Alps: a palaeoecological point of view. Comptes Rendus Biol 333:424–428. doi:10.1016/j.crvi.2010.01.002

    Google Scholar 

  • Di Pasquale G, Marziano M, Impagliazzo S, Lubritto C, de Natale A, Bader MY (2008) The Holocene treeline in the northern Andes (Ecuador): first evidence from soil charcoal. Palaeogeogr Palaeoclimatol Palaeoecol 259:17–34. doi:10.1016/j.palaeo.2006.12.016

    Google Scholar 

  • Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 6th edn. Ulmer, Stuttgart

    Google Scholar 

  • Fall PL (1997) Timberline fluctuations and late Quaternary paleoclimates in the Southern Rocky Mountains, Colorado. Geol Soc Am Bull 109:1,306–1,320

    Google Scholar 

  • Finsinger W, Tinner W (2005) Minimum count sums for charcoal-concentration estimates in pollen slides: accuracy and potential errors. Holocene 15:293–297

    Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582. doi:10.1111/j.1654-1103.2007.tb02571.x

    Google Scholar 

  • Gilli A, Anselmetti F, Glur L, Wirth S (2013) Lake Sediments as Archives of Recurrence Rates and Intensities of Past Flood Events. In: Schneuwly-Bollschweiler M, Stoffel M, Rudolf-Miklau F (eds) Dating torrential processes on fans and cones, vol 47. Springer, Dordrecht, pp 225–242

    Google Scholar 

  • Gobet E, Tinner W, Hochuli PA, van Leeuwen JFN, Ammann B (2003) Middle to late Holocene vegetation history of the upper Engadine (Swiss Alps): the role of man and fire. Veget Hist Archaeobot 12:143–163. doi:10.1007/s00334-003-0017-4

    Google Scholar 

  • Gobet E, Tinner W, Bigler C, Hochuli PA, Ammann B (2005) Early-Holocene afforestation processes in the lower subalpine belt of the Central Swiss Alps as inferred from macrofossil and pollen records. Holocene 15:672–686. doi:10.1191/0959683605hl843rp

    Google Scholar 

  • Gosling WD, Bunting MJ (2008) A role for palaeoecology in anticipating future change in mountain regions? The paleoecological record from mountain regions open science conference, global change in mountain regions. Palaeogeogr Palaeoclimatol Palaeoecol 259(1):1–5. doi:10.1016/j.palaeo.2007.10.017

    Google Scholar 

  • Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barančok P, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernández Calzado MR, Kazakis G, Krajči J, Larsson P, Mallaun M, Michelsen O, Moiseev D, Moiseev P, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat J, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nat Clima Change 2:111–115. doi:10.1038/nclimate1329

    Google Scholar 

  • Grosjean M, Suter PJ, Trachsel M, Wanner H (2007) Ice-borne prehistoric finds in the Swiss Alps reflect Holocene glacier fluctuations. J Quat Sci 22:203–207. doi:10.1002/jqs.1111

    Google Scholar 

  • Guthruf J, Zeh M, Guthruf-Seiler K (1999) Kleinseen im Kanton Bern. Haupt, Bern

    Google Scholar 

  • Haas J, Richoz I, Tinner W, Wick L (1998) Synchronous Holocene climatic oscillations recorded on the Swiss Plateau and at timberline in the Alps. Holocene 8:301–309. doi:10.1191/095968398675491173

    Google Scholar 

  • Hafner A (2009) Geschichte aus dem Eis: Archäologische Funde aus alpinen Gletschern und Eismulden. Mitt Naturf Ges Bern 66:159–171

    Google Scholar 

  • Hafner A (2012) Archaeological discoveries on Schnidejoch and at other ice sites in the European Alps. Arctic 65:189–202

    Google Scholar 

  • Hafner A, Schnidejoch et Lötschenpass (2008) trouvailles romaines sur deux cols des Alpes bernoises occidentales. In: Vesan EM (ed) Alpis Poenina, Grand Saint-Bernard: une voie à travers l’Europe. Séminaire de Clôture, 11/12 avril 2008, Fort de Bard (Vallée d’Aoste). Projet Interreg III A Italie-Suisse 2000–2006, pp 477–486

  • Harsch MA, Hulme PE, McGlone, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1,040–1,049. doi:10.1111/j.1461-0248.2009.01355.x

    Google Scholar 

  • Heegaard E, Birks H, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618. doi:10.1191/0959683605hl836rr

    Google Scholar 

  • Heggen Presthus M, Birks HH, Heiri O, Grytnes J, Birks HJ (2012) Are fossil assemblages in a single sediment core from a small lake representative of total deposition of mite, chironomid, and plant macrofossil remains? J Paleolimnol 48:669–691. doi:10.1007/s10933-012-9637-y

    Google Scholar 

  • Heiri O, Millet L (2005) Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, France). J Quat Sci 20:33–44. doi:10.1002/jqs.895

    Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110. doi:10.1023/A:1008119611481

    Google Scholar 

  • Heiri O, Lotter AF, Hausmann S, Kienast F (2003a) A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 13:477–484

    Google Scholar 

  • Heiri O, Wick L, van Leeuwen JFN, van der Knaap WO, Lotter AF (2003b) Holocene tree immigration and the chironomid fauna of a small Swiss subalpine lake (Hinterburgsee, 1515 m a.s.l.). Palaeogeogr Palaeoclimatol Palaeoecol 189:35–53

    Google Scholar 

  • Henne PD, Elkin CM, Reineking B, Bugmann H, Tinner W (2011) Did soil development limit spruce (Picea abies) expansion in the Central Alps during the Holocene? Testing a palaeobotanical hypothesis with a dynamic landscape model. J Biogeogr 38:933–949. doi:10.1111/j.1365-2699.2010.02460.x

    Google Scholar 

  • Holtmeier F (2009) Mountain timberlines: Ecology, patchiness, and dynamics, 2nd edn. Springer, Dordrecht

    Google Scholar 

  • Horrocks M, Ogden J (2000) Evidence for Lateglacial and Holocene tree-line fluctuations from pollen diagrams from the Subalpine zone on Mt Hauhungatahi, Tongariro National Park, New Zealand. Holocene 10:61–73. doi:10.1191/095968300667751080

    Google Scholar 

  • IPCC (2007) Climate Change 2007. The physical science basis: working group I contribution to the 4th Assessment Report of the IPCC. Cambridge University Press, Cambridge

  • Joerin UE, Stocker TF, Schlüchter C (2006) Multicentury glacier fluctuations in the Swiss Alps during the Holocene. Holocene 16:697–704. doi:10.1191/0959683606hl964rp

    Google Scholar 

  • Körner C (2003) Alpine plant life: Functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin

    Google Scholar 

  • Körner C (2012) Alpine treelines. Springer, Basel

    Google Scholar 

  • Landolt E (2003) Unsere Alpenflora, 7th edn. SAC-Verlag, Bern

    Google Scholar 

  • Lang G (1994) Quartäre Vegetationsgeschichte Europas. Fischer, Jena

    Google Scholar 

  • Lang G, Tobolski K (1985) Hobschensee: late-glacial and Holocene environments of a lake at the timberline in the Central Swiss Alps. In: Lang G (ed) Swiss lake and mire environments during the last 15 000 years. Cramer, Vaduz, pp 273–336

    Google Scholar 

  • Larocque-Tobler I, Heiri O, Wehrli M (2010) Late Glacial and Holocene temperature changes at Egelsee, Switzerland, reconstructed using subfossil chironomids. J Paleolimnol 43:649–666. doi:10.1007/s10933-009-9358-z

    Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. A&A 428:261–285. doi:10.1051/0004-6361:20041335

    Google Scholar 

  • Latałowa M, van der Knaap WO (2006) Late Quaternary expansion of Norway spruce Picea abies (L.) Karst. in Europe according to pollen data. Quat Sci Rev 25:2,780–2,805. doi:10.1016/j.quascirev.2006.06.007

    Google Scholar 

  • Lauber K, Wagner G, Gygax A (2012) Flora Helvetica, 5th edn. Haupt/Stuttgart, Bern/Wien

    Google Scholar 

  • Legendre P, Birks HJB (2012) From Classical to Canonical Ordination. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments, vol 5. Springer, Dordrecht, pp 201–248

    Google Scholar 

  • Leonelli G, Pelfini M, Di Morra Cella U, Garavaglia V (2011) Climate Warming and the Recent Treeline Shift in the European Alps: the Role of Geomorphological Factors in High-Altitude Sites. Ambio 40:264–273. doi:10.1007/s13280-010-0096-2

    Google Scholar 

  • Lévesque PEM, Dinel H, Larouche A (1988) Guide to the identification of plant macrofossils in Canadian peatlands. Land Resource Research Centre, Research Branch, Agriculture Canada, Ottawa, Ont

    Google Scholar 

  • Lotter AF, Birks HJB, Eicher U, Hofmann W, Schwander J, Wick L (2000) Younger Dryas and Allerød summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 159:349–361

    Google Scholar 

  • Lotter A, Heiri O, Hofmann W, van der Knaap W, van Leeuwen J, Walker I, Wick L (2006) Holocene timber-line dynamics at Bachalpsee, a lake at 2265 m a.s.l. in the northern Swiss Alps. Veget Hist Archaeobot 15:295–307

    Google Scholar 

  • Magny M (2004) Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. The record of human/climate interaction in lake Sediments. Quat Int 113:65–79. doi:10.1016/S1040-6182(03)00080-6

    Google Scholar 

  • Magny M, Bossuet G, Ruffaldi P, Leroux A, Mouthon J (2011) Orbital imprint on Holocene palaeohydrological variations in west-central Europe as reflected by lake-level changes at Cerin (Jura Mountains, eastern France). J Quat Sci 26:171–177. doi:10.1002/jqs.1436

    Google Scholar 

  • Markgraf V (1970) Palaeohistory of the spruce in Switzerland. Nature 228:249–251. doi:10.1038/228249a0

    Google Scholar 

  • MeteoSchweiz (2005) Klimadiagramme und -normwerte an Stationen. http://www.meteoschweiz.admin.ch/web/de/klima/klima_schweiz/klimadiagramme.html. Accessed 16 Jan 2013

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Müller W, Fricke H, Halliday AN, McCulloch MT, Wartho J (2003) Origin and migration of the alpine iceman. Science 302:862–866. doi:10.1126/science.1089837

    Google Scholar 

  • Nicolussi K, Kaufmann M, Patzelt G, van der Plicht J, Thurner A (2005) Holocene tree-line variability in the Kauner Valley, Central Eastern Alps, indicated by dendrochronological analysis of living trees and subfossil logs. Veget Hist Archaeobot 14:221–234. doi:10.1007/s00334-005-0013-y

    Google Scholar 

  • Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado RF, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollar J, Larsson P, Moiseev P, Moiseev D, Molau U, Mesa JM, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat J, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355. doi:10.1126/science.1219033

    Google Scholar 

  • Reille M (1999) Pollen et spores d’Europe et d’Afrique du Nord, 2nd edn. Laboratoire de botanique historique et palynologie, Marseille

    Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0–50,000 years cal b.p. Radiocarbon 51(4):1111–1150

    Google Scholar 

  • Rein B, Sirocko F (2002) In-situ reflectance spectroscopy: analysing techniques for high-resolution pigment logging in sediment cores. Int J Earth Sci 91:950–954. doi:10.1007/s00531-002-0264-0

    Google Scholar 

  • Reitmaier T (ed) (2012) Letzte Jäger, erste Hirten : hochalpine Archäologie in der Silvretta. Archäologie in Graubünden. Amt für Kultur, Archäologischer Dienst Graubünden (ADG), Chur

  • Renssen H, Seppä H, Crosta X, Goosse H, Roche DM (2012) Global characterization of the Holocene thermal maximum. Quatern Sci Rev 48:7–19. doi:10.1016/j.quascirev.2012.05.022

    Google Scholar 

  • Rey F, Schwörer C, Gobet E, Colombaroli D, van Leeuwen JFN, Schleiss S, Tinner W (2013) Climatic and human impacts on mountain vegetation at Lauenensee (Bernese Alps, Switzerland) during the last 14,000 years. Holocene. doi:10.1177/0959683613489585

    Google Scholar 

  • Röpke A, Stobbe A, Oeggl K, Kalis AJ, Tinner W (2011) Late-Holocene land-use history and environmental changes at the high altitudes of St Antönien (Switzerland, Northern Alps): combined evidence from pollen, soil and tree-ring analyses. Holocene 21:485–498. doi:10.1177/0959683610385727

    Google Scholar 

  • Samartin S, Heiri O, Vescovi E, Brooks SJ, Tinner W (2012) Lateglacial and early Holocene summer temperatures in the southern Swiss Alps reconstructed using fossil chironomids. J Quat Sci 27:279–289. doi:10.1002/jqs.1542

    Google Scholar 

  • Saunders KM, Grosjean M, Hodgson DA (2013) A 950 year temperature reconstruction from Duckhole Lake, southern Tasmania, Australia. Holocene. doi:10.1177/0959683612470176

    Google Scholar 

  • Schmidt R, Koinig KA, Thompson R, Kamenik C (2002) A multi proxy core study of the last 7000 years of climate and alpine land-use impacts on an Austrian mountain lake (Unterer Landschitzsee, Niedere Tauern). Palaeogeogr Palaeoclimatol Palaeoecol 187:101–120. doi:10.1016/S0031-0182(02)00511-4

    Google Scholar 

  • Schoch WH (1988) Botanische Makroreste: Ein Atlas zur Bestimmung häufig gefundener und ökologisch wichtiger Pflanzensamen. Haupt, Bern

    Google Scholar 

  • Seppä H, Nyman M, Korhola A, Weckstrom J (2002) Changes of treelines and alpine vegetation in relation to post-glacial climate dynamics in northern Fennoscandia based on pollen and chironomid records. J Quat Sci 174:287–301. doi:10.1002/jqs.678

    Google Scholar 

  • Speed JDM, Austrheim G, Hester AJ, Mysterud A (2010) Experimental evidence for herbivore limitation of the treeline. Ecology 91:3,413–3,420. doi:10.1890/09-2300.1

  • Speed JDM, Austrheim G, Hester AJ, Mysterud A (2011) Growth limitation of mountain birch caused by sheep browsing at the altitudinal treeline. For Ecol Manag 261:1,344–1,352. doi:10.1016/j.foreco.2011.01.017

    Google Scholar 

  • Spindler K (2005) Transhumanz. Preistoria alpina 39:219–225

    Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • Ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. In: Begon M, Fitter A, Ford E, Macfadyen A (eds) Advances in ecological research, vol 18. Academic Press, London, pp 271–317

    Google Scholar 

  • Ter Braak CJF, Šmilauer P (2002) CANOCO. Software for Canonical Community Ordination. Microcomputer Power, Ithaca, NY, USA

  • Theurillat J, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109. doi:10.1023/A:1010632015572

    Google Scholar 

  • Tinner W (2007) Treeline studies. In: Elias SA (ed) Encyclopedia of Quaternary science, 1st edn. Elsevier, Amsterdam, Boston, pp 2,374–2,384

    Google Scholar 

  • Tinner W, Hu F (2003) Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. Holocene 13:499–505

    Google Scholar 

  • Tinner W, Kaltenrieder P (2005) Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93:936–947

    Google Scholar 

  • Tinner W, Theurillat J (2003) Uppermost limit, extent, and fluctuations of the timberline and treeline ecocline in the Swiss Central Alps during the past 11,500 years. Arct Antarct Alp Res 35:158–169

    Google Scholar 

  • Tinner W, Ammann B, Germann P (1996) Treeline fluctuations recorded for 12,500 years by soil profiles, pollen, and plant macrofossils in the Central Swiss Alps. Arct Alp Res 28:131–147

    Google Scholar 

  • Tinner W, Conedera M, Ammann B, Lotter AF (2005) Fire ecology north and south of the Alps since the last ice age. Holocene 15:1,214–1,226. doi:10.1191/0959683605hl892rp

    Google Scholar 

  • Tinner W, Bigler C, Gedye S, Gregory-Eaves I, Jones RT, Kaltenrieder P, Krähenbühl U, Hu FS (2008a) A 700-year paleoecological record of boreal ecosystem responses to climatic variation from Alaska. Ecology 89:729–743. doi:10.2307/27651595

    Google Scholar 

  • Tinner W, Nielsen EH, Lotter AF (2008b) Evidence for late-mesolithic agriculture? A reply to Karl-Ernst Behre. Quatern Sci Rev 27(13–14):1,468–1,470

    Google Scholar 

  • Tobolski K, Ammann B (2000) Macrofossils as records of plant responses to rapid late glacial climatic changes at three sites in the Swiss Alps. Palaeogeogr Palaeoclimatol Palaeoecol 159:251–259

    Google Scholar 

  • Trachsel M, Grosjean M, Schnyder D, Kamenik C, Rein B (2010) Scanning reflectance spectroscopy (380–730 nm): a novel method for quantitative high-resolution climate reconstructions from minerogenic lake sediments. J Paleolimnol 44:979–994. doi:10.1007/s10933-010-9468-7

    Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline. Tree existence at high altitudes with special reference to the European Alps. Springer, Berlin

    Google Scholar 

  • Trautmann W (1953) Zur Unterscheidung fossiler Spaltöffnungen der mitteleuropäischen Coniferen. Flora 140:523–533

    Google Scholar 

  • Valsecchi V, Tinner W (2010) Vegetation responses to climatic variability in the Swiss Southern Alps during the Misox event at the early-mid Holocene transition. J Quatern Sci 25(8):1,248–1,258. doi:10.1002/jqs.1403

    Google Scholar 

  • Valsecchi V, Carraro G, Conedera M, Tinner W (2010) Late-Holocene vegetation and land-use dynamics in the Southern Alps (Switzerland) as a basis for nature protection and forest management. Holocene 20:483–495

    Google Scholar 

  • Vescovi E, Ravazzi C, Arpenti E, Finsinger W, Pini R, Valsecchi V, Wick L, Ammann B, Tinner W (2007) Interactions between climate and vegetation during the lateglacial period as recorded by lake and mire sediment archives in Northern Italy and Southern Switzerland. Quat Sci Rev 26:1,650–1,669. doi:10.1016/j.quascirev.2007.03.005

    Google Scholar 

  • von Gunten L, Grosjean M, Rein B, Urrutia R, Appleby P (2009) A quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo, central Chile, back to ad 850. Holocene 19(6):873–881. doi:10.1177/0959683609336573

    Google Scholar 

  • von Gunten L, Grosjean M, Kamenik C, Fujak M, Urrutia R (2012) Calibrating biogeochemical and physical climate proxies from non-varved lake sediments with meteorological data: methods and case studies. J Paleolimnol 47(4):583–600. doi:10.1007/s10933-012-9582-9

    Google Scholar 

  • Walther G, Beißner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16(5):541–548. doi:10.1111/j.1654-1103.2005.tb02394.x

    Google Scholar 

  • Wegmüller S, Lotter AF (1990) Palynostratigraphische Untersuchungen zur spät-und postglazialen Vegetationsgeschichte der nordwestlichen Kalkvoralpen. Botanica Helvetica 100(1):37–73

    Google Scholar 

  • Welten M (1982) Vegetationsgeschichtliche Untersuchungen in den westlichen Schweizer Alpen. Bern-Wallis, Birkhäuser, Basel

    Google Scholar 

  • Whitlock C (1993) Postglacial vegetation and climate of Grand Teton and Southern Yellowstone National Parks. Ecol Monogr 63(2):173. doi:10.2307/2937179

    Google Scholar 

  • Whitlock C, Larsen C (2002) Charcoal as a fire proxy. In: Smol J, Birks H, Last W, Bradley R, Alverson K (eds) Tracking environmental change using lake sediments. Springer, Netherlands, pp 75–97

    Google Scholar 

  • Wick L, Tinner W (1997) Vegetation changes and timberline fluctuations in the Central Alps as indicators of Holocene climatic oscillations. Arct Alp Res 29:445–458

    Google Scholar 

  • Wick L, van Leeuwen JFN, van der Knaap WO, Lotter AF (2003) Holocene vegetation development in the catchment of Sägistalsee (1935 m asl), a small lake in the Swiss Alps. J Paleolimnol 30(3):261–272. doi:10.1023/A:1026088914129

    Google Scholar 

  • Wolfe AP, Vinebrooke RD, Michelutti N, Rivard B, Das B (2006) Experimental calibration of lake-sediment spectral reflectance to chlorophyll a concentrations: methodology and paleolimnological validation. J Paleolimnol 36(1):91–100. doi:10.1007/s10933-006-0006-6

    Google Scholar 

Download references

Acknowledgments

We would like to thank Willi Tanner, Paul D. Henne, Camilla Calò, Nadine Berthel and Stefanie B. Wirth for help during the fieldwork, Flor Oberli for help in the lab, Erika Gobet, Jacqueline van Leeuwen and Ercolino Gatto for help during the pollen and macrofossil analyses and Alfred Bretscher, Heinz Wanner, Stefan Brönnimann, Pim van der Knaap and two anonymous reviewers for valuable comments. This study was funded by the Dr. Alfred Bretscher Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Schwörer.

Additional information

Communicated by F. Bittmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwörer, C., Kaltenrieder, P., Glur, L. et al. Holocene climate, fire and vegetation dynamics at the treeline in the Northwestern Swiss Alps. Veget Hist Archaeobot 23, 479–496 (2014). https://doi.org/10.1007/s00334-013-0411-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-013-0411-5

Keywords

Navigation