Skip to main content
Log in

Linkage mapping of the locus for inherited ovine arthrogryposis (IOA) to sheep Chromosome 5

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Arthrogryposis is a congenital malformation affecting the limbs of newborn animals and infants. Previous work has demonstrated that inherited ovine arthrogryposis (IOA) has an autosomal recessive mode of inheritance. Two affected homozygous recessive (art/art) Suffolk rams were used as founders for a backcross pedigree of half-sib families segregating the IOA trait. A genome scan was performed using 187 microsatellite genetic markers and all backcross animals were phenotyped at birth for the presence and severity of arthrogryposis. Pairwise LOD scores of 1.86, 1.35, and 1.32 were detected for three microsatellites, BM741, JAZ, and RM006, that are located on sheep Chr 5 (OAR5). Additional markers in the region were identified from the genetic linkage map of BTA7 and by in silico analyses of the draft bovine genome sequence, three of which were informative. Interval mapping of all autosomes produced an F value of 21.97 (p < 0.01) for a causative locus in the region of OAR5 previously flagged by pairwise linkage analysis. Inspection of the orthologous region of HSA5 highlighted a previously fine-mapped locus for human arthrogryposis multiplex congenita neurogenic type (AMCN). A survey of the HSA5 genome sequence identified plausible candidate genes for both IOA and human AMCN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Bamshad M, Watkins WS, Zenger RK, Bohnsack JF, Carey JC, et al. (1994) A gene for distal arthrogryposis type I maps to the pericentromeric region of chromosome 9. Am J Hum Genet 55, 1153–1158

    PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971

    PubMed  CAS  Google Scholar 

  • Crawford AM, Dodds KG, Ede AJ, Pierson CA, Montgomery GW, et al. (1995) An autosomal genetic linkage map of the sheep genome. Genetics 140, 703–724

    PubMed  CAS  Google Scholar 

  • de Gortari MJ, Freking BA, Cuthbertson RP, Kappes SM, Keele JW, et al. (1998) A second-generation linkage map of the sheep genome. Mamm Genome 9, 204–209

    Article  PubMed  Google Scholar 

  • Doherty ML, Kelly EP, Healy AM, Callanan JJ, Crosby TF, et al. (2000) Congenital arthrogryposis: an inherited limb deformity in pedigree Suffolk lambs. Vet Rec 146, 748–753

    PubMed  CAS  Google Scholar 

  • Evans G, Maxwell WMC, Salamon S (1987) Salamon’s artificial insemination of sheep and goats. (Sydney: Butterworths)

    Google Scholar 

  • Genini S, Malek M, Spilar S, Nguyen TT, Menetrey F, et al. (2004) Arthrogryposis multiplex congenita (AMC), a hereditary disease in swine, maps to chromosome 5 by linkage analysis. Mamm Genome 15, 935–941

    Article  PubMed  CAS  Google Scholar 

  • Gordon N (1998) Arthrogryposis multiplex congenita. Brain Dev 20, 507–511

    Article  PubMed  CAS  Google Scholar 

  • Green P, Falls KA, Crooks S (1990) Documentation for CRI-MAP, version 2.4. (St Louis, MO: Washington University School of Medicine)

    Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315–324

    PubMed  CAS  Google Scholar 

  • Hall JG (1997) Arthrogryposis multiplex congenita: etiology, genetics, classification, diagnostic approach, and general aspects. J Pediatr Orthop B 6, 159–166

    PubMed  CAS  Google Scholar 

  • Hostetler CE, Kincaid RL, Mirando MA (2003) The role of essential trace elements in embryonic and fetal development in livestock. Vet J 166, 125–139

    Article  PubMed  CAS  Google Scholar 

  • Hulland TJ (1993) Muscle and Tendon. (London: Academic Press)

    Google Scholar 

  • Ihara N, Takasuga A, Mizoshita K, Takeda H, Sugimoto M, et al. (2004) A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Res 14, 1987–1998

    Article  PubMed  CAS  Google Scholar 

  • Kim JW, Seghers V, Cho JH, Kang Y, Kim S, et al. (2002) Transactivation of the mouse sulfonylurea receptor I gene by BETA2/NeuroD. Mol Endocrinol 16, 1097–1107

    Article  PubMed  CAS  Google Scholar 

  • Krakowiak PA, O’Quinn JR, Bohnsack JF, Watkins WS, Carey JC, et al. (1997) A variant of Freeman-Sheldon syndrome maps to 11p15.5-pter. Am J Hum Genet 60, 426–432

    PubMed  CAS  Google Scholar 

  • Lee JE, Hollenberg SM, Snider L, Turner DL, Lipnick N, et al. (1995) Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268, 836–844

    Article  PubMed  CAS  Google Scholar 

  • Lomo OM, (1985) Arthrogryposis and associated defects in pigs: indication of simple recessive inheritance. Acta Vet Scand 26, 419–422

    PubMed  CAS  Google Scholar 

  • Lynch JW (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84, 1051–1095

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. (Sunderland, MA: Sinauer)

    Google Scholar 

  • Lynn DJ, Freeman AR, Murray C, Bradley DG (2005) A genomics approach to the detection of positive selection in cattle: adaptive evolution of the T-cell and natural killer cell-surface protein CD2. Genetics 170, 1189–1196

    Article  PubMed  CAS  Google Scholar 

  • MacHugh DE, Shriver MD, Loftus RT, Cunningham P, Bradley DG (1997) Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics 146, 1071–1086

    PubMed  CAS  Google Scholar 

  • Maddox JF, Davies KP, Crawford AM, Hulme DJ, Vaiman D, et al. (2001) An enhanced linkage map of the sheep genome comprising more than 1000 loci. Genome Res 11, 1275–1289

    Article  PubMed  CAS  Google Scholar 

  • Mayhew IG (1984) Neuromuscular arthrogryposis multiplex congenita in a thoroughbred foal. Vet Pathol 21, 187–192

    PubMed  CAS  Google Scholar 

  • Morton NE (1955) Sequential tests for the detection of linkage. Am J Hum Genet 7, 277–318

    PubMed  CAS  Google Scholar 

  • Nettleton PF (1991) Border Disease. In: Martin WB, Aitken ID, eds. Diseases of sheep. (Oxford: Blackwell Scientific)

  • Ott J (1999a) Analysis of human genetic linkage, 3rd ed. (Baltimore: The John Hopkins University Press)

    Google Scholar 

  • Ott J (1999b) Methods of analysis and resources available for genetic trait mapping. J Hered 90, 68–70

    Article  CAS  Google Scholar 

  • Papadopoulos S, Rizos D, Duffy P, Wade M, Quinn K, et al. (2002) Embryo survival and recipient pregnancy rates after transfer of fresh or vitrified, in vivo or in vitro produced ovine blastocysts. Anim Reprod Sci 74, 35–44

    Article  PubMed  CAS  Google Scholar 

  • Rajendra S, Lynch JW, Schofield PR (1997) The glycine receptor. Pharmacol Ther 73, 121–146

    Article  PubMed  CAS  Google Scholar 

  • Roberts JAF (1929) The inheritance of a lethal muscle contracture in sheep. J Genet 21, 57–69

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press)

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18, 233–234

    Article  PubMed  CAS  Google Scholar 

  • Seaton G, Haley CS, Knott SA, Kearsey M, Visscher PM (2002) QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18, 339–340

    Article  PubMed  CAS  Google Scholar 

  • Shohat M, Lotan R, Magal N, Shohat T, Fischel-Ghodsian N, et al. (1997) A gene for arthrogryposis multiplex congenita neuropathic type is linked to D5S394 on chromosome 5qter. Am J Hum Genet 61, 1139–1143

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, et al. (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104, 365–376

    Article  PubMed  CAS  Google Scholar 

  • Sung SS, Brassington AM, Grannatt K, Rutherford A, Whitby FG, et al. (2003a) Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Am J Hum Genet 72, 681–690

    Article  CAS  Google Scholar 

  • Sung SS, Brassington AM, Krakowiak PA, Carey JC, Jorde LB, et al. (2003b) Mutations in TNNT3 cause multiple congenital contractures: a second locus for distal arthrogryposis type 2B. Am J Hum Genet 73, 212–214

    Article  Google Scholar 

  • Tanamy MG, Magal N, Halpern GJ, Jaber L, Shohat M (2001) Fine mapping places the gene for arthrogryposis multiplex congenita neuropathic type between D5S394 and D5S2069 on chromosome 5qter. Am J Med Genet 104, 152–156

    Article  PubMed  CAS  Google Scholar 

  • Van Huffel X, Weyns A, Van Nassauw L, Cockelbergh D, De Moor A (1988) Decreased number of alpha-motoneurons in the cervical intumescence of calves with arthrogryposis multiplex congenita of both thoracic limbs. Vet Res Commun 12, 237–243

    Article  PubMed  Google Scholar 

  • Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, et al. (2005) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 33, D39–45

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Enterprise Ireland (No. SC/01/453) and Science Foundation Ireland (Nos. 05/RFP/Gen0060 and 02-IN.1-B256). The authors thank Mr. Pat Duffy, Dr. Dimitris Rizos, Ms. Ciara O’Meara, Ms. Mary Duane, Mr. Eoin Ryan, Mr. William Fitzgerald, Ms. Laura Mitchell, and all of the Staff at the UCD Lyons Research Farm for assistance with sheep management and reproduction. They also thank Prof. Noelle Cockett and Ms. Tracy Shay of the Animal, Dairy and Veterinary Sciences Department, Utah State University for valuable advice and provision of microsatellite primers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. MacHugh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, A.M., MacHugh, D.E., Park, S.D. et al. Linkage mapping of the locus for inherited ovine arthrogryposis (IOA) to sheep Chromosome 5. Mamm Genome 18, 43–52 (2007). https://doi.org/10.1007/s00335-006-0016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-006-0016-8

Keywords

Navigation