Skip to main content

Advertisement

Log in

A novel family of repeat sequences in the mouse genome responsive to retinoic acid

  • Original Contribution
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Repetitive DNA sequences form a substantial portion of eukaryotic genomes and exist as members of families that differ in copy number, length, and sequence. Various functions, including chromosomal integrity, gene regulation, and gene rearrangement have been ascribed to repetitive DNA. Although there is evidence that some repetitive sequences may participate in gene regulation, little is known about how their own expression may be regulated. During the course of gene trapping experiments with embryonic stem (ES) cells, we identified a novel class of expressed repetitive sequences in the mouse, using 5′ rapid amplification of cDNA ends-polymerase chain reaction (5′ RACE-PCR) to clone fusion transcripts from these lines. The expression of these repeats was induced by retinoic acid (RA) in cultured ES cells examined by Northern blot analyses. In vivo, their expression was spatially restricted in embryos and in the adult brain as determined by RNA in situ hybridization. We designated this family of sequences as Dr (developmentally regulated) repeats. The members of the Dr family, identified by cDNA cloning and through database search, are highly similar in sequence and show peculiar structural features. Our results suggest the expression of Dr-containing transcripts may be part of an ES cell differentiation program triggered by RA. The nucleotide sequence data reported in this paper have been submitted to GenBank and have been assigned the accession numbers U51725 (Dr-1), U51726 (Dr-2), and U51727 (Dr-3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agabian, N. (1990). Trans splicing of nuclear pre-mRNAs. Cell 61, 1157–1160.

    Article  PubMed  CAS  Google Scholar 

  2. Aizawa, H., Sekine, Y., Takemura, R., Zhang, Z., Nangaku, M., Hirokawa, N. (1992). Kinesin family in murine central nervous system. J. Cell Biol. 1993, 1287–1296.

    Article  Google Scholar 

  3. Bennett, K.L., Hill, R.E., Pietras, D.F., Woodworth-Gutai, M., KaneHaas, C., Houston, J.M., Heath, J.K., Hastie, N.D. (1984). Most highly repeated dispersed DNA families in the mouse genome. Mol. Cell. Biol. 4, 1561–1571.

    PubMed  CAS  Google Scholar 

  4. Blumenthal, T., Thomas, J. (1988). Cis and trans mRNA splicing in C. elegans. Trends Genet. 4, 305–308.

    Article  PubMed  CAS  Google Scholar 

  5. Brini, A.T., Lee, G.M., Kinet, J.-P. (1993). Involvement of Alu sequences in the cell-specific regulation of transcription of the γ chain of Fc and T cell receptors. J. Biol. Chem. 268, 1355–1361.

    PubMed  CAS  Google Scholar 

  6. Britten, R.J., Davidson, E.H. (1969). Gene regulation for higher cells: a theory. Science 165, 349–357.

    Article  PubMed  CAS  Google Scholar 

  7. Chomczynski, P., Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  8. Darnell, J., Lodish, H., Baltimore, D. (1990). Molecular Cell Biology. (New York: Scientific American Books).

    Google Scholar 

  9. Decoville, M., Moreau, P., Viegas-Pequignot, E., Locker, D. (1992). Genomic organization and nucleotide sequence of a long mosaic repetitive DNA in the mouse genome. Mamm. Genome 2, 172–185.

    Article  PubMed  CAS  Google Scholar 

  10. Deininger, P.L., Batzer, M.A., Hutchison III, C.A., Edgell, M.H. (1992). Master genes in mammalian repetitive DNA amplification. Trends Genet. 8, 307–311.

    PubMed  CAS  Google Scholar 

  11. Edwards, D.R., Parfett, L.J., Denhardt, D.T. (1985). Transcriptional regulation of two serum-induced RNAs in mouse fibroblasts: equivalence of one species to B2 repetitive elements. Mol. Cell. Biol. 5, 3280–3288.

    PubMed  CAS  Google Scholar 

  12. Eul, J., Graessmann, M., Graessmann, A. (1995). Experimental evidence for RNA trans-splicing in mammalian cells. EMBO J. 14, 3226–3235.

    PubMed  CAS  Google Scholar 

  13. Feng, G.-S., Shen, R., Heng, H.H.Q., Tsui, L.-C., Kazlauskas, A., Pawson, T. (1994). Receptor-binding, tyrosine phosphorylation and chromosome localization of the mouse SH2-containing phosphotyrosine phosphatase Syp. Oncogene 9, 1545–1550.

    PubMed  CAS  Google Scholar 

  14. Forrester, L., Nagy, A., Sam, M., Watt, A., Stevenson, L., Bernstein, A., Joyner, A.L., Wurst, W. (1996). Induction gene trapping in ES cells: identification of developmentally regulated genes that respond to retinoic acid. Proc. Natl. Acad. Sci. USA 93, 1677–1682.

    Article  PubMed  CAS  Google Scholar 

  15. Hardman, N. (1986). Structure and function of repetitive DNA in eukaryotes. Biochem. J. 234, 1–11.

    PubMed  CAS  Google Scholar 

  16. Hellmann-Blumberg, U., McCarthy Hintz, M.F., Gatewood, J.M., Schmid, C.W. (1993). Developmental differences in methylation of human Alu repeats. Mol. Cell. Biol. 13, 4523–4530.

    PubMed  CAS  Google Scholar 

  17. Heng, H.H.Q., Squire, J., Tsui, L.-C. (1992). High resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. Natl. Acad. Sci. USA 89, 9509–9513.

    Article  PubMed  CAS  Google Scholar 

  18. Heng, H.H.Q., Xiao, H., Shi, X.-M., Greenblatt, J., Tsui, L.-C. (1994). Genes encoding general initiation factors for RNA polymerase II transcription are dispersed in the human genome. Hum. Mol. Genet. 3, 61–64.

    Article  PubMed  CAS  Google Scholar 

  19. Henthorn, P.S., Mager, D.L., Huisman, T.H., Smithies, O. (1986). A gene deletion ending within a complex array of repeated sequences 3 ′ to the human beta-globin gene cluster. Proc. Natl. Acad. Sci. USA 83, 5194–5198.

    Article  PubMed  CAS  Google Scholar 

  20. Hobbs, H.H., Brown, M.S., Goldstein, J.L., Russell, D.W. (1986). Deletion of exon encoding cysteine-rich repeat of low density lipoprotein receptor alters its binding specificity in a subject with familial hypercholesterolemia. J. Biol. Chem. 261, 13114–13120.

    PubMed  CAS  Google Scholar 

  21. Hogan, B., Beddington, R., Costantini, F., Lacy, E. (1994). Manipulating the Mouse Embryo, A Laboratory Manual. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press).

    Google Scholar 

  22. Huang, L.S., Ripps, M.E., Korman, S.H., Deckelbaum, R.J., Breslow, J.L. (1989). Hypobetalipoproteinemia due to an apolipoprotein B gene exon 21 deletion derived by Alu-Alu recombination. J. Biol. Chem. 264, 11394–11400.

    PubMed  CAS  Google Scholar 

  23. Kato, S., Anderson, R.A., Camerini-Otero, R.O. (1986). Foreign DNA introduced by calcium phosphate is integrated into repetitive DNA elements of the mouse L cell genome. Mol. Cell. Biol. 6, 1787–1795.

    PubMed  CAS  Google Scholar 

  24. Koga, Y., Lindstrom, E., Fenyo, E.M., Wigzell, H., Mak, T.W. (1988). High levels of heterodisperse RNAs accumulate in T cells infected with human immunodeficiency virus and in normal thymocytes. Proc. Natl. Acad. Sci. USA 85, 4521–4525.

    Article  PubMed  CAS  Google Scholar 

  25. Krontiris, T.G. (1995). Minisatellites and human disease. Science 269, 1682–1683.

    Article  PubMed  CAS  Google Scholar 

  26. Lania, L., Pannuti, A., La Mantia, G., Basilico, C. (1987). The transcription of B2 repeated sequences is regulated during the transition from quiescent to proliferative state in cultured rodent cells. FEBS Lett. 219, 400–404.

    Article  PubMed  CAS  Google Scholar 

  27. Maichele, A.J., Farwell, N.J., Chamberlain, J.S. (1993). A B2 repeat insertion generates alternate structures of the mouse muscle γ-phosphorylase kinase gene. Genomics 16, 139–149.

    Article  PubMed  CAS  Google Scholar 

  28. Mark, W.H., Signorelli, K., Blum, M., Kwee, L., Lacy, E. (1992). Genomic structure of the locus associated with an insertional mutation in line 4 transgenic mice. Genomics 13, 159–166.

    Article  PubMed  CAS  Google Scholar 

  29. Matthews, K.R., Tschudi, C., Ullu, E. (1994). A common pyrimidinerich motif governs trans-splicing and polyadenylation of tubulin polycistronic pre-mRNA in trypanosomes. Genes & Dev. 8, 491–501.

    Article  CAS  Google Scholar 

  30. Murnane, J.P., Morales, J.F. (1995). Use of a mammalian interspersed repetitive (MIR) element in the coding and processing sequences of mammalian genes. Nucleic Acids Res. 23, 2837–2839.

    Article  PubMed  CAS  Google Scholar 

  31. Murphy, D., Brickell, P.M., Latchman, D.S., Willison, K., Rigby, P.W.J. (1983). Transcripts regulated during normal embryonic development and oncogenic transformation share a repetitive element. Cell 35, 865–871.

    Article  PubMed  CAS  Google Scholar 

  32. Nicholls, R.D., Fischel-Ghodsian, N., Higgs, D.R. (1987). Recombination at the humans alpha-globin gene cluster: sequence features and topological constraints. Cell 49, 369–378.

    Article  PubMed  CAS  Google Scholar 

  33. Nilsen, T.W. (1989). Trans-splicing in nematodes. Exp. Parasitol. 69, 413–416.

    Article  PubMed  CAS  Google Scholar 

  34. Ogura, T., Evans, R.M. (1995). A retinoic acid-triggered cascade of HOXB1 gene activation. Proc. Natl. Acad. Sci. USA 92, 387–391.

    Article  PubMed  CAS  Google Scholar 

  35. Perlman, S., Phillips, C.A., Bishop, J.D. (1976). A study of foldback DNA. Cell 8, 33–42.

    Article  PubMed  CAS  Google Scholar 

  36. Rouyer, F., Simmler, M.C., Page, D.C., Weissenbach, J. (1987). A sex chromosome rearrangement in a human XX male caused by Alu-Alu recombination. Cell 51, 417–425.

    Article  PubMed  CAS  Google Scholar 

  37. Rudert, F., Bronner, S., Garnier, J.M., Dolle, P. (1995). Transcripts from opposite strands of gamma satellite DNA are differentially expressed during mouse development. Mamm. Genome 6, 76–83.

    Article  PubMed  CAS  Google Scholar 

  38. Rudiger, N.S., Hansen, P.S., Jorgensen, M., Faergeman, O., Bolund, L., Gregersen, N. (1991). Repetitive sequences involved in the recombination leading to deletion of exon 5 of the low-density-lipoprotein receptor gene in a patient with familial hypercholesterolemia. Eur. J. Biochem. 198, 107–111.

    Article  PubMed  CAS  Google Scholar 

  39. Rudiger, N.S., Gregersen, N., Kielland-Brandt, C. (1995). One short well conserved region of Alu-sequences is involved in human gene rearrangements and has homology with prokaryotic chi. Nucleic Acids Res. 23, 256–260.

    Article  PubMed  CAS  Google Scholar 

  40. Saffer, J.D., Thurston, S J. (1989). A negative regulatory element with properties similar to those of enhancers is contained within an Alu sequence. Mol. Cell. Biol. 9, 355–364.

    PubMed  CAS  Google Scholar 

  41. Saksela, K., Baltimore, D. (1993). Negative regulation of immunoglobulin kappa light-chain gene transcription by a short sequence homologous to the murine B1 repetitive element. Mol. Cell. Biol. 13, 3698–3705.

    PubMed  CAS  Google Scholar 

  42. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning, A Laboratory Manual. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press).

    Google Scholar 

  43. Schmid, C., Maraia, R. (1992). Transcriptional regulation and transpositional selection of active SINE sequences. Curr. Opin. Genet. Dev. 2, 874–882.

    Article  PubMed  CAS  Google Scholar 

  44. Schmid, C.W., Deininger, P.L. (1975). Sequence organization of the human genome. Cell 6, 345–358.

    Article  PubMed  CAS  Google Scholar 

  45. Silver, L.M. (1995). Mouse Genetics, Concepts and Applications. (New York: Oxford University Press).

    Google Scholar 

  46. Simeone, A., Acampora, D., Arcioni, L., Andrews, P.W., Boncinelli, E., Mavilio, F. (1990). Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 346, 763–766.

    Article  PubMed  CAS  Google Scholar 

  47. Singh, K., Carey, M., Saragosti, S., Botchan, M. (1985). Expression of enhanced levels of small RNA polymerase III transcripts encoded by the B2 repeats in simian virus 40-transformed mouse cells. Nature 314, 553–556.

    Article  PubMed  CAS  Google Scholar 

  48. Smidt, M., Kirsch, I., Ratner, L. (1990). Deletion of Alu sequences in the fifth c-sis intron in individuals with meningiomas. J. Clin. Invest. 86, 1151–1157.

    Article  PubMed  CAS  Google Scholar 

  49. Tini, M., Otulakowski, G., Breitman, M.L., Tsui, L.C., Giguere, V. (1993). An everted repeat mediates retinoic acid induction of the γ-crystallin gene: evidence of a direct role for retinoids in lens development. Genes & Dev. 7, 295–307.

    Article  CAS  Google Scholar 

  50. Tomilin, N.V., Iguchi-Ariga, S.M.M., Ariga, H. (1990). Transcription and replication silencer element is present within conserved region of human Alu repeats interacting with nuclear protein. FEBS Lett. 263, 69–72.

    Article  PubMed  CAS  Google Scholar 

  51. Vanin, E.F., Henthorn, P.S., Kioussis, D., Grosveld, F., Smithies, O. (1983). Unexpected relationships between four large deletions in the human beta-globin gene cluster. Cell 35, 701–709.

    Article  PubMed  CAS  Google Scholar 

  52. Vansant, G., Reynolds, W.F. (1995). The consensus sequence of a major Alu subfamily contains a functional retinoic acid response element. Proc. Natl. Acad. Sci. USA 92, 8229–9233.

    Article  PubMed  CAS  Google Scholar 

  53. Vellard, M., Sureau, A., Soret, J., Martinerie, C., Perbol, B. (1992). A potential splicing factor is encoded by the opposite strand of the (ranispliced c-myb exon. Proc. Natl. Acad. Sci. USA 89, 2511–2515.

    Article  PubMed  CAS  Google Scholar 

  54. Vidal, F., Mougneau, E., Glaichenhaus, N., Vaigot, P., Darmon, M., Cuzin, F. (1993). Coordinated posttranscriptional control of gene expression by modular elements including Alu-like repetitive sequences. Proc. Natl. Acad. Sci. USA 90, 208–212.

    Article  PubMed  CAS  Google Scholar 

  55. Wallace, M.R., Andersen, L.B., Saulino, A.M., Gregory, P.E., Glover, T.W., Collins, F.S. (1991). A de novo Alu insertion results in neurofibromatosis type 1. Nature 353, 864–866.

    Article  PubMed  CAS  Google Scholar 

  56. Watson, J.B., Sutcliffe, J.G. (1987). Primate brain-specific cytoplasmic transcript of the Alu repeat family. Mol. Cell. Biol. 7, 3324–3327.

    PubMed  CAS  Google Scholar 

  57. Wilkie, T.M., Palmiter, R.D. (1987). Analysis of the integrant in the MyK-103 transgenic mice in which males fail to transmit the integrant. Mol. Cell. Biol. 7, 1646–1655.

    PubMed  CAS  Google Scholar 

  58. Wilkie, T.M., Braun, R.E., Ehrman, W.J., Palmiter, R.D., Hammer, R.E. (1991). Germ-line intrachromosomal recombination restores fertility in transgenic MyK-103 male mice. Genes & Dev. 5, 38–48.

    Article  CAS  Google Scholar 

  59. Young, M.W. (1979). Middle repetitive DNA: a fluid component of the Drosophila genome. Proc. Natl. Acad. Sci. USA 76, 6274–6278.

    Article  PubMed  CAS  Google Scholar 

  60. Youssoufian, H., Lodish, H.F. (1993). Transcriptional inhibition of the murine erythropoietin receptor gene by an upstream repetitive element. Mol. Cell. Biol. 13, 98–104.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sam, M., Wurst, W., Forrester, L. et al. A novel family of repeat sequences in the mouse genome responsive to retinoic acid. Mammalian Genome 7, 741–748 (1996). https://doi.org/10.1007/s003359900224

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003359900224

Keywords

Navigation