Skip to main content

Advertisement

Log in

Prediction of coral bleaching in the Florida Keys using remotely sensed data

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Shallow water tropical coral reefs may bleach due to extremes in a variety of environmental factors. Of particular concern have been temperature, ultraviolet radiation, and photosynthetically available radiation. Satellite observation systems allow synoptic-scale monitoring of coral environments that can be used to investigate the effects of such environmental parameters. Recent advancements in algorithm development for new satellite data products have made it possible to include light availability in such monitoring. Long-term satellite data (2000–2013), in combination with in situ bleaching surveys (N = 3,334; spanning 2003–2012), were used to identify the environmental factors contributing to bleaching of Florida reef tract corals. Stepwise multiple linear regression supports the conclusion that elevated sea surface temperature (SST; partial R 2adj  = 0.13; p < 0.001) and high visible light levels reaching the benthos (partial R 2adj  = 0.06; p < 0.001) each independently contributed to coral bleaching. The effect of SST was modulated by significant interactions with wind speed (partial R 2adj  = 0.03; p < 0.001) and ultraviolet benthic available light (partial R 2adj  = 0.01; p = 0.022). These relationships were combined via canonical analysis of principal coordinates to create a predictive model of coral reef bleaching for the region. This model predicted ‘severe bleaching’ and ‘no bleaching’ conditions with 69 and 57 % classification success, respectively. This was approximately 2.5 times greater than that predicted by chance and shows improvement over similar models created using only temperature data. The results enhance the understanding of the factors contributing to coral bleaching and allow for weekly assessment of historical and current bleaching stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84:511–525

    Article  Google Scholar 

  • Atlas R, Hoffman RN, Ardizzone J, Leidner SM, Jusem JC, Smith DK, Gombos D (2010) A Cross-calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications. Bull Am Meteorol Soc 92:157–174

    Article  Google Scholar 

  • Barnes BB, Hu C (2013) A hybrid cloud detection algorithm to improve MODIS sea surface temperature data quality and coverage over the eastern Gulf of Mexico. IEEE Trans Geosci Remote Sens 51:3273–3285

    Article  Google Scholar 

  • Barnes BB, Hu C, Schaeffer BA, Lee Z, Palandro DA, Lehrter JC (2013) MODIS-derived spatiotemporal water clarity patterns in optically shallow Florida Keys waters: A new approach to remove bottom contamination. Remote Sens Environ 134:377–391

    Article  Google Scholar 

  • Barnes BB, Hu C, Cannizzaro JP, Craig SE, Hallock P, Jones DL, Lehrter JC, Melo N, Schaeffer BA, Zepp R (2014) Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements. Remote Sens Environ 140:519–532

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Bricaud A, Morel A, Prieur L (1981) Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol Oceanogr 26:43–53

    Article  CAS  Google Scholar 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138

    Article  Google Scholar 

  • Carder K, Chen FR, Hawes SK (2003) Algorithm theoretical basis document (ATBD) 20: Instantaneous photosynthetically available radiation and absorbed radiation by phytoplankton. NASA MODIS Ocean Science Team, Greenbelt, MD

  • Donlon C, Minnett P, Gentemann C, Nightingale TJ, Barton IJ, Ward B, Murray MJ (2002) Toward improved validation of satellite sea surface skin temperature measurements for climate research. J Clim 15:353–369

    Article  Google Scholar 

  • Donner SD (2011) An evaluation of the effect of recent temperature variability on the prediction of coral bleaching events. Ecol Appl 21:1718–1730

    Article  PubMed  Google Scholar 

  • Douglas AE (2003) Coral bleaching–how and why? Mar Pollut Bull 46:385–392

    Article  CAS  PubMed  Google Scholar 

  • Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45:677–685

    Article  CAS  Google Scholar 

  • Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65

    Article  Google Scholar 

  • Franz BA, Kwiatkowska EJ, Meister G, McClain CR (2008) Moderate Resolution Imaging Spectroradiometer on Terra: limitations for ocean color applications. J Appl Remote Sens 2:023525

    Article  Google Scholar 

  • Frouin R, McPherson J, Ueyoshi K, Franz BA (2012) A time series of photosynthetically available radiation at the ocean surface from SeaWiFS and MODIS data. SPIE Asia-Pacific Remote Sensing, International Society for Optics and Photonics, pp 852519–852519

  • Gauch HGJ (1993) Prediction, parsimony and noise. Am Sci 81:468–478

    Google Scholar 

  • Gleason DF, Wellington GM (1993) Ultraviolet-radiation and coral bleaching. Nature 365:836–838

    Article  Google Scholar 

  • Gleeson MW, Strong AE (1995) Applying MCSST to coral reef bleaching. Adv Space Res 16:151–154

    Article  Google Scholar 

  • Gleason DF, Wellington GM (1995) Variation in UVB sensitivity of planula larvae of the coral Agaricia agaricites along a depth gradient. Mar Biol 123:693–703

    Article  Google Scholar 

  • Gordon HR (1989) Can the Lambert-Beer Law be applied to the diffuse attenuation coefficient of ocean water? Limnol Oceanogr 34:1389–1409

    Article  Google Scholar 

  • Gregg WW, Carder KL (1990) A simple spectral solar irradiance model for cloudless maritime atmospheres. Limnol Oceanogr 35:1657–1675

    Article  Google Scholar 

  • Griggs M (1968) Absorption coefficients of ozone in the ultraviolet and visible regions. J Chem Phys 49:857–859

    Article  CAS  Google Scholar 

  • Gustafsson MSM, Baird ME, Ralph PJ (2014) Modeling photoinhibition-driven bleaching in Scleractinian coral as a function of light, temperature, and heterotrophy. Limnol Oceanogr 59:603–622

    Article  Google Scholar 

  • Hendee JC, Mueller E, Humphrey C, Moore T (2001) A data-driven expert system for producing coral bleaching alerts at Sombrero Reef in the Florida Keys, USA. Bull Mar Sci 69:673–684

    Google Scholar 

  • Hoegh-Guldberg O, Smith GJ (1989) The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J Exp Mar Biol Ecol 129:279–303

    Article  Google Scholar 

  • Hsu S, Meindl E, Gilhousen D (1994) Determining the power-law wind-profile exponent under near-neutral stability conditions at sea. J Appl Meteorol 33:757–765

    Article  Google Scholar 

  • Hughes TP, Connell JH (1999) Multiple stressors on coral reefs: a long-term perspective. Limnology Oceanogr 44:932–940

    Article  Google Scholar 

  • Jaap WC (1979) Observations on zooxanthellae expulsion at Middle Sambo Reef, Florida Keys. Bull Mar Sci 29:414–422

    Google Scholar 

  • Jokiel PL, Coles SL (1977) Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar Biol 43:201–208

    Article  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O (2001) Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant Cell Environ 24:89–99

    Article  CAS  Google Scholar 

  • Kratzer S, Håkansson B, Sahlin C (2003) Assessing secchi and photic zone depth in the Baltic Sea from satellite data. Ambio 32:577–585

    PubMed  Google Scholar 

  • Leichter JJ, Helmuth B, Fischer AM (2006) Variation beneath the surface: Quantifying complex thermal environments on coral reefs in the Caribbean, Bahamas and Florida. J Mar Res 64:563–588

    Article  Google Scholar 

  • Lesser MP (2011) Coral bleaching: causes and Mmechanisms. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 405–419

    Chapter  Google Scholar 

  • Liu G, Heron SF, Eakin CM, Rauenzahn JL, Geiger EF, Skirving WJ, Burgess TFR, Strong AE (2014) NOAA Coral Reef Watch Next-Generation 5 km Satellite Sea Surface Temperature-Based Decision Support System for Coral Bleaching Management. Reef Encounter 29:27–29

    Google Scholar 

  • Madronich S, McKenzie RL, Björn LO, Caldwell MM (1998) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J Photochem Photobiol B 46:5–19

    Article  CAS  PubMed  Google Scholar 

  • Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163

    Article  Google Scholar 

  • McClain EP, Pichel WG, Walton CC (1985) Comparative performance of AVHRR-based multichannel sea surface temperatures. J Geophys Res: Oceans 90:11587–11601

    Article  Google Scholar 

  • McClanahan TR (2004) The relationship between bleaching and mortality of common corals. Mar Biol 144:1239–1245

    Article  Google Scholar 

  • Mumby PJ, Chisholm JRM, Edwards AJ, Andrefouet S, Jaubert J (2001) Cloudy weather may have saved Society Island reef corals during the 1998 ENSO event. Mar Ecol Prog Ser 222:209–216

    Article  Google Scholar 

  • NOAA (2007) Florida Keys National Marine Sanctuary Revised Management Plan. US Department of Commerce, National Ocean Service, Washington

    Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    Article  CAS  PubMed  Google Scholar 

  • Patt FS, Barnes RA, Eplee Jr. RE, Franz BA, Robinson WD, Feldman GC, Bailey SW, Gales J, Werdell PJ, Wang M, Fruoin R, Stumpf RP, Arnone RA, Gould Jr. RW, Martinolich PM, Ransibrahmanakul V, O’Reilly JE, Yoder JA (2003) Algorithm updates for the fourth SeaWiFS data reprocessing. NASA Technical Memorandum 206892, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD

  • Pierson DC, Kratzer S, Strömbeck N, Håkansson B (2008) Relationship between the attenuation of downwelling irradiance at 490 nm with the attenuation of PAR (400 nm–700 nm) in the Baltic Sea. Remote Sens Environ 112:668–680

    Article  Google Scholar 

  • Porter JW, Lewis SK, Porter KG (1999) The effect of multiple stressors on the Florida Keys Coral Reef ecosystem: a landscape hypothesis and a physiological test. Limnol Oceanogr 44:941–949

    Article  Google Scholar 

  • Robbins LL, Hansen ME, Raabe EA, Knorr PO, Browne J (2007) Cartographic production for the Florida Shelf Habitat (FLaSH) map study: generation of surface grids, contours, and KMZ files. USGS OFR 2007-1397, United States Geological Survey, Reston, VA

  • Shank GC, Zepp RG, Vähätalo A, Lee R, Bartels E (2010) Photobleaching kinetics of chromophoric dissolved organic matter derived from mangrove leaf litter and floating Sargassum colonies. Mar Chem 119:162–171

    Article  CAS  Google Scholar 

  • Shick JM, Lesser MP, Jokiel PL (1996) Effects of ultraviolet radiation on corals and other coral reef organisms. Glob Chang Biol 2:527–545

    Article  Google Scholar 

  • Strong AE, Liu G, Skirving W, Eakin CM (2011) NOAA’s Coral Reef Watch program from satellite observations. Ann GIS 17:83–92

    Article  Google Scholar 

  • Wagner DE, Kramer P, van Woesik R (2010) Species composition, habitat, and water quality influence coral bleaching in southern Florida. Mar Ecol Prog Ser 408:65–78

    Article  Google Scholar 

  • West JM, Salm RV (2003) Resistance and resilience to coral bleaching: implications for coral reef conservation and management. Conserv Biol 17:956–967

    Article  Google Scholar 

  • Wolfe R (2006) MODIS Geolocation. In: Qu J, Gao W, Kafatos M, Murphy R, Salomonson V (eds) Earth science satellite remote sensing. Springer, Berlin, pp 50–73

    Chapter  Google Scholar 

  • Wooldridge SA (2009) Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia. Mar Pollut Bull 58:745–751

    Article  CAS  PubMed  Google Scholar 

  • Zepp RG, Shank GC, Stabenau E, Patterson KW, Cyterski M, Fisher W, Bartels E, Anderson SL (2008) Spatial and temporal variability of solar ultraviolet exposure of coral assemblages in the Florida Keys: Importance of colored dissolved organic matter. Limnol Oceanogr 53:1909–1922

    Article  CAS  Google Scholar 

  • Zhao J, Barnes BB, Melo N, English D, Lapointe B, Muller-Karger F, Schaeffer B, Hu C (2013) Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters. Remote Sens Environ 131:38–50

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank FRRP, AGRRA, and Mote for collecting bleaching data, and NASA, NOAA, and USGS for providing environmental data. Three anonymous reviewers provided substantial comments to improve this manuscript, whose efforts are greatly appreciated. The authors wish to acknowledge support from NOAA (sub-award of NA10OAR4320143) and NASA (several awards from Ocean Biology and Biogeochemistry program, Water Quality program, and Suomi National Polar-orbiting Partnership program to CH and awards NNX09AV24G and NNX14AP62A S01 to FMK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian B. Barnes.

Additional information

Communicated by Biology Editor Prof Brian Helmuth

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnes, B.B., Hallock, P., Hu, C. et al. Prediction of coral bleaching in the Florida Keys using remotely sensed data. Coral Reefs 34, 491–503 (2015). https://doi.org/10.1007/s00338-015-1258-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-015-1258-2

Keywords

Navigation