Skip to main content

Advertisement

Log in

Clarifying functional roles: algal removal by the surgeonfishes Ctenochaetus striatus and Acanthurus nigrofuscus

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The lined bristletooth, Ctenochaetus striatus, and the brown surgeonfish, Acanthurus nigrofuscus, are among the most abundant surgeonfishes on Indo-Pacific coral reefs. Yet, the functional role of these species has been the focus of an ongoing debate lasting at least six decades. Specifically, to what extent are C. striatus herbivorous like the visually similar A. nigrofuscus? To address this question, we used natural feeding surfaces, covered with late successional stage reef-grown algal turfs, to examine turf algal removal by the two species. Surfaces exposed to C. striatus in laboratory experiments exhibited no significant reductions in turf length or area covered by turfing algae. In marked contrast, A. nigrofuscus reduced turf length by 51% and area covered by turfing algae by 15% in 1 h. The gut contents of specimens from the reef revealed that A. nigrofuscus predominantly ingests algae (the dominant item in 79.6–94.7% of gut content quadrats), while C. striatus ingests detritus and sediments (dominant in 99.6–100% of quadrats). Therefore, C. striatus ingests detritus and sediment, leaving mature algal turfs relatively intact, while A. nigrofuscus directly removes and ingests turf algae. The function of C. striatus differs from cropping herbivorous surgeonfishes such as A. nigrofuscus. On coral reefs, C. striatus brush detrital aggregates from algal turfs, removing microorganisms, organic detritus and inorganic sediment. Confusion over the functional role of C. striatus may stem from an inability to fit it into a single functional category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnold SN, Steneck RS, Mumby PJ (2010) Running the gauntlet: inhibitory effects of algal turfs on the processes of coral recruitment. Mar Ecol Prog Ser 414:91–105

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  CAS  PubMed  Google Scholar 

  • Bellwood DR, Hoey AS, Bellwood O, Goatley CHR (2014) Evolution of long-toothed fishes and the changing nature of fish–benthos interactions on coral reefs. Nat Commun 5:3144

    Article  PubMed  Google Scholar 

  • Birrell CL, McCook LJ, Willis BL (2005) Effects of algal turfs and sediment on coral settlement. Mar Pollut Bull 51:408–414

    Article  CAS  PubMed  Google Scholar 

  • Bonaldo RM, Bellwood DR (2009) Dynamics of parrotfish grazing scars. Mar Biol 156:771–777

    Article  Google Scholar 

  • Bonaldo RM, Hoey AS, Bellwood DR (2014) The ecosystem roles of parrotfishes on tropical reefs. Oceanogr Mar Biol Annu Rev 52:81–132

    Google Scholar 

  • Borowitzka MA, Larkum AWD, Borowitzka LJ (1978) A preliminary study of algal turf communities of a shallow coral reef lagoon using an artificial substratum. Aquat Bot 5:365–381

    Article  Google Scholar 

  • Bouchon-Navaro Y, Harmelin-Vivien ML (1981) Quantitative distribution of herbivorous reef fishes in the Gulf of Aqaba (Red Sea). Mar Biol 63:79–86

    Article  Google Scholar 

  • Brandl SJ, Bellwood DR (2014) Individual-based analyses reveal limited functional overlap in a coral reef fish community. J Anim Ecol 83:661–670

    Article  PubMed  Google Scholar 

  • Brandl SJ, Bellwood DR (2016) Microtopographic refuges shape consumer–producer dynamics by mediating consumer functional diversity. Oecologia 182:203–217

    Article  PubMed  Google Scholar 

  • Brandl SJ, Robbins WD, Bellwood DR (2015) Exploring the nature of ecological specialization in a coral reef fish community: morphology, diet and foraging microhabitat use. Proc R Soc Lond B Biol Sci 282:20151147

    Article  Google Scholar 

  • Cheal AJ, Emslie M, Miller I, Sweatman H (2012) The distribution of herbivorous fishes on the Great Barrier Reef. Mar Biol 159:1143–1154

    Article  Google Scholar 

  • Choat JH (1991) The biology of herbivorous fishes on coral reefs. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 120–155

    Chapter  Google Scholar 

  • Choat JH, Bellwood DR (1985) Interactions amongst herbivorous fishes on a coral reef: influence of spatial variation. Mar Biol 89:221–234

    Article  Google Scholar 

  • Choat JH, Clements KD (1998) Vertebrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Annu Rev Ecol Syst 29:375–403

    Article  Google Scholar 

  • Choat JH, Clements KD, Robbins WD (2002) The trophic status of herbivorous fishes on coral reefs 1: dietary analyses. Mar Biol 140:613–623

    Article  CAS  Google Scholar 

  • Chong-Seng KM, Mannering TD, Pratchett MS, Bellwood DR, Graham NAJ (2012) The influence of coral reef benthic condition on associated fish assemblages. PLoS ONE 7:e42167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements KD (1991) Gut microorganisms of surgeonfishes (family Acanthuridae). Ph.D. thesis, James Cook University, Townsville

  • Clements KD, Raubenheimer D, Choat JH (2009) Nutritional ecology of marine herbivorous fishes: ten years on. Funct Ecol 23:79–92

    Article  Google Scholar 

  • Clements KD, German DP, Piché J, Tribollet AD, Howard Choat J (2016) Integrating ecological roles and trophic resources on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol J Linn Soc. doi:10.1111/bij.12914

    Google Scholar 

  • Crossman DJ, Choat JH, Clements KD (2005) Nutritional ecology of nominally herbivorous fishes on coral reefs. Mar Ecol Prog Ser 296:129–142

    Article  CAS  Google Scholar 

  • Diaz-Pulido G, McCook LJ (2002) The fate of bleached corals: patterns and dynamics of algal recruitment. Mar Ecol Prog Ser 232:115–128

    Article  Google Scholar 

  • Diaz-Pulido G, Harii S, McCook LJ, Hoegh-Guldberg O (2010) The impact of benthic algae on the settlement of a reef-building coral. Coral Reefs 29:203–208

    Article  Google Scholar 

  • Doropoulos C, Roff G, Bozec Y-M, Zupan M, Werminghausen J, Mumby PJ (2016) Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol Monogr 86:20–44

    Google Scholar 

  • Fishelson L, Montgomery WL, Myrberg AA (1985) A Unique symbiosis in the gut of tropical herbivorous surgeonfish (Acanthuridae: Teleostei) from the Red Sea. Science 229:49–51

    Article  Google Scholar 

  • Goatley CHR, Bellwood DR (2010) Biologically mediated sediment fluxes on coral reefs: sediment removal and off-reef transportation by the surgeonfish Ctenochaetus striatus. Mar Ecol Prog Ser 415:237–245

    Article  Google Scholar 

  • Goatley CHR, Bellwood DR (2012) Sediment suppresses herbivory across a coral reef depth gradient. Biol Lett 8:1016–1018

    Article  PubMed  PubMed Central  Google Scholar 

  • Goatley CHR, Bellwood DR (2013) Ecological consequences of sediment on high-energy coral reefs. PLoS ONE 8:e77737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goatley CHR, Bonaldo RM, Fox RJ, Bellwood DR (2016) Sediments and herbivory as sensitive indicators of coral reef degradation. Ecol Soc 21:29

    Article  Google Scholar 

  • Gordon SE, Goatley CHR, Bellwood DR (2016) Low-quality sediments deter grazing by the parrotfish Scarus rivulatus on inner-shelf reefs. Coral Reefs 35:285–291

    Article  Google Scholar 

  • Graham NAJ, Chabanet P, Evans RD, Jennings S, Letourneur Y, Aaron Macneil M, Mcclanahan TR, Ohman MC, Polunin NVC, Wilson SK (2011) Extinction vulnerability of coral reef fishes. Ecol Lett 14:341–348

    Article  PubMed  PubMed Central  Google Scholar 

  • Harlin MM, Lindbergh JM (1977) Selection of substrata by seaweeds: optimal surface relief. Mar Biol 40:33–40

    Article  Google Scholar 

  • Hiatt RW, Strasburg DW (1960) Ecological relationships of the fish fauna on coral reefs of the Marshall Islands. Ecol Monogr 30:65–127

    Article  Google Scholar 

  • Hixon MA, Brostoff WN (1985) Substrate characteristics, fish grazing, and epibenthic reef assemblages off Hawaii. Bull Mar Sci 37:200–213

    Google Scholar 

  • Hixon MA, Brostoff WN (1996) Succession and herbivory: effects of differential fish grazing on Hawaiian coral-reef algae. Ecol Monogr 66:67–90

    Article  Google Scholar 

  • Johansson CL, van de Leemput IA, Depczynski M, Hoey AS, Bellwood DR (2013) Key herbivores reveal limited functional redundancy on inshore coral reefs. Coral Reefs 32:963–972

    Article  Google Scholar 

  • Jones R (1968) Ecological relationships in Hawaiian and Johnston Island Acanthuridae (surgeonfishes). Micronesica 4:309–361

    Google Scholar 

  • Kelly ELA, Eynaud Y, Clements SM, Gleason M, Sparks RT, Williams ID, Smith JE (2016) Investigating functional redundancy versus complementarity in Hawaiian herbivorous coral reef fishes. Oecologia 182:1151–1163

    Article  PubMed  Google Scholar 

  • Krone R, Paster M, Schuhmacher H (2011) Effect of the surgeonfish Ctenochaetus striatus (Acanthuridae) on the processes of sediment transport and deposition on a coral reef in the Red Sea. Facies 57:215–221

    Article  Google Scholar 

  • Krone R, Bshary R, Paster M, Eisinger M, van Treeck P, Schuhmacher H (2008) Defecation behaviour of the lined bristletooth surgeonfish Ctenochaetus striatus (Acanthuridae). Coral Reefs 27:619–622

    Article  Google Scholar 

  • Marshell A, Mumby PJ (2012) Revisiting the functional roles of the surgeonfish Acanthurus nigrofuscus and Ctenochaetus striatus. Coral Reefs 31:1093–1101

    Article  Google Scholar 

  • Marshell A, Mumby PJ (2015) The role of surgeonfish (Acanthuridae) in maintaining algal turf biomass on coral reefs. J Exp Mar Bio Ecol 473:152–160

    Article  Google Scholar 

  • Montgomery WL, Myrberg AA, Fishelson L (1989) Feeding ecology of surgeonfishes (Acanthuridae) in the northern Red Sea, with particular reference to Acanthurus nigrofuscus (Forsskål). J Exp Mar Biol Ecol 132:179–207

    Article  Google Scholar 

  • Nash KL, Graham NAJ, Bellwood DR (2013) Fish foraging patterns, vulnerability to fishing, and implications for the management of ecosystem function across scales. Ecol Appl 23:1632–1644

    Article  PubMed  Google Scholar 

  • Nyström M (2006) Redundancy and response diversity of functional groups: implications for the resilience of coral reefs. Ambio 35:30–35

    Article  PubMed  Google Scholar 

  • Perez K III, Rodgers KS, Jokiel PL, Lager CV, Lager DJ (2014) Effects of terrigenous sediment on settlement and survival of the reef coral Pocillopora damicornis. PeerJ 2:e387

    Article  PubMed  PubMed Central  Google Scholar 

  • Plass-Johnson JG, Ferse SCA, Jompa J, Wild C, Teichberg M (2015) Fish herbivory as key ecological function in a heavily degraded coral reef system. Limnol Oceanogr 60:1382–1391

    Article  Google Scholar 

  • Polunin NVC, Klumpp DW (1989) Ecological correlates of foraging periodicity in herbivorous reef fishes of the Coral Sea. J Exp Mar Biol Ecol 126:1–20

    Article  Google Scholar 

  • Polunin NVC, Harmelin-Vivien M, Galzin R (1995) Contrasts in algal food processing among five herbivorous coral-reef fishes. J Fish Biol 47:455–465

    Article  Google Scholar 

  • Pratchett MS, Hoey AS, Wilson SK, Messmer V, Graham NAJ (2011) Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3:424–452

    Article  Google Scholar 

  • Purcell SW (2000) Association of epilithic algae with sediment distribution on a windward reef in the northern Great Barrier Reef, Australia. Bull Mar Sci 66:199–214

    Google Scholar 

  • Purcell SW, Bellwood DR (1993) A functional analysis of food procurement in two surgeonfish species, Acanthurus nigrofuscus and Ctenochaetus striatus (Acanthuridae). Environ Biol Fishes 37:139–159

    Article  Google Scholar 

  • Purcell SW, Bellwood DR (2001) Spatial patterns of epilithic algal and detrital resources on a windward coral reef. Coral Reefs 20:117–125

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Randall JE (1955) A contribution to the biology of the Acanthuridae (Surgeon Fishes). Ph.D. thesis. University of Hawaii, Hawaii

  • Randall JE (1961) Overgrazing of algae by herbivorous marine fishes. Ecology 42:812

    Article  Google Scholar 

  • Randall JE (2005) Reef and shore fishes of the South Pacific: New Caledonia to Tahiti and the Pitcairn Islands. University of Hawaii Press, Honolulu

    Google Scholar 

  • Robertson D (1982) Fish feces as fish food on a Pacific coral reef. Mar Ecol Prog Ser 7:253–265

    Article  Google Scholar 

  • Robertson DR, Gaines SD (1986) Interference competition structures habitat use in a local assemblage of coral reef surgeonfishes. Ecology 67:1372–1383

    Article  Google Scholar 

  • Russ GR (1984) Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. II. Patterns of zonation of mid-shelf and outershelf reefs. Mar Ecol Prog Ser 20:35–44

    Article  Google Scholar 

  • Schuhmacher H, Krone R, Treeck P Van (2008) Underestimated eroder among reef fishes—experimental comparison between Ctenochaetus striatus and Acanthurus nigrofuscus (Acanthuridae). In: Proceedings of 11th international coral reef symposium, vol 10. pp 331–334

  • Scott FJ, Russ GR (1987) Effects of grazing on species composition of the epilithic algal community on coral reefs of the central Great Barrier Reef. Mar Ecol Prog Ser 39:293–304

    Article  Google Scholar 

  • Smith JE, Hunter CL, Smith CM (2010) The effects of top-down versus bottom-up control on benthic coral reef community structure. Oecologia 163:497–507

    Article  PubMed  Google Scholar 

  • Steneck RS (1997) Crustose corallines, other algal functional groups, herbivores and sediments: complex interactions along reef productivity gradients. In: Proceedings of the 8th international coral reef symposium, vol 1. pp 695–700

  • Streit RP, Hoey AS, Bellwood DR (2015) Feeding characteristics reveal functional distinctions among browsing herbivorous fishes on coral reefs. Coral Reefs 34:1037–1047

    Article  Google Scholar 

  • Tâmega FTS, Figueiredo MAO, Ferreira CEL, Bonaldo RM (2016) Seaweed survival after consumption by the greenbeak parrotfish, Scarus trispinosus. Coral Reefs 35:329–334

    Article  Google Scholar 

  • Tebbett SB, Goatley CHR, Bellwood DR (2017a) The effects of algal turf sediments and organic loads on feeding by coral reef surgeonfishes. PLoS ONE 12:e0169479

    Article  PubMed  PubMed Central  Google Scholar 

  • Tebbett SB, Goatley CHR, Bellwood DR (2017b) Fine sediments suppress detritivory on coral reefs. Mar Pollut Bull 114:934–940

    Article  CAS  PubMed  Google Scholar 

  • Tebbett SB, Goatley CHR, Bellwood DR (2017c) Algal turf sediments and sediment production by parrotfishes across the continental shelf of the northern Great Barrier Reef. PLoS ONE 12:e0170854

    Article  PubMed  PubMed Central  Google Scholar 

  • Tenore KR (1981) Organic nitrogen and caloric content of detritus: 1. utilization by the deposit-feeding polychaete, Capitella capitata. Estuar Coast Shelf Sci 12:39–47

    Article  CAS  Google Scholar 

  • Vermeij MJA, van der Heijden RA, Olthuis JG, Marhaver KL, Smith JE, Visser PM (2013) Survival and dispersal of turf algae and macroalgae consumed by herbivorous coral reef fishes. Oecologia 171:417–425

    Article  PubMed  Google Scholar 

  • Wilson SK, Bellwood DR (1997) Cryptic dietary components of territorial damselfishes (Pomacentridae, Labroidei). Mar Ecol Prog Ser 153:299–310

    Article  CAS  Google Scholar 

  • Wilson SK, Bellwood DR, Choat JH, Furnas MJ (2003) Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanogr Mar Biol Annu Rev 41:279–309

    Google Scholar 

  • Wismer S, Hoey AS, Bellwood DR (2009) Cross-shelf benthic community structure on the Great Barrier Reef: relationships between macroalgal cover and herbivore biomass. Mar Ecol Prog Ser 376:45–54

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Streit, J. Khan, M. McFarland, P. O’Brien and Lizard Island Research Staff for field support; J. Day and K. Miller for assistance with video processing, K. Blake and S. Askew for assistance with scanning electron micrography, two anonymous reviewers for helpful and thought-provoking comments and the Australian Research Council for financial support (DRB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sterling B. Tebbett.

Additional information

Communicated by Ecology Editor Dr. Stuart A. Sandin

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tebbett, S.B., Goatley, C.H.R. & Bellwood, D.R. Clarifying functional roles: algal removal by the surgeonfishes Ctenochaetus striatus and Acanthurus nigrofuscus . Coral Reefs 36, 803–813 (2017). https://doi.org/10.1007/s00338-017-1571-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-017-1571-z

Keywords

Navigation