Skip to main content
Log in

Plasma effects in picosecond-femtosecond UV laser ablation of polymers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser ablation of polyimide (PI) and polymethyl-methacrylate (PMMA) at 248 nm with pulse lengths τ ranging from 200 fs to 200 ps was investigated. The measured ablation rates show minima for pulse lengths of about 5 ps (PMMA) or 50 ps (PI).

The reflected fraction of the ablating laser pulse was measured as a function of the pulse length. In the case of PMMA maximum reflectance corresponds to a minimum ablation rate.

This behavior can be explained by a dynamic plasma reflection model: A fast build up of a dense plasma is followed by high obscuration for a brief transition time and a self-regulating opacity for the rest of the pulse. This model of plasma mediated ablation leads to a τ1/4-dependence of the ablation rate at fixed fluence, which fits very well to the measured data, in particular if an extension to nanosecond ablation data of PI and PMMA is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Schmidt. J. Ihlemann, B. Wolff-Rottke, K. Luther, J. Troe: J. Appl. Phys. 83, 5458 (1998)

    Article  ADS  Google Scholar 

  2. R.S. Taylor, D.L. Singleton, G. Paraskevopoulos: Appl. Phys. Lett. 50, 1779 (1987)

    Article  ADS  Google Scholar 

  3. M. Himmelbauer, E. Arenholz, D. Bäuerle: Appl. Phys. A 63, 87 (1996)

    ADS  Google Scholar 

  4. P. Simon, J. Ihlemann: Appl. Phys. A 63, 505 (1996)

    Article  ADS  Google Scholar 

  5. J. Krüger, W. Kautek, M. Lenzner, S. Sartania, C. Spielmann, F. Krausz: Proc. SPIE 2991, 40 (1997)

    Article  ADS  Google Scholar 

  6. D. Ashkenasi, H. Varel, A. Rosenfeld, F. Noack, E.E.B. Campbell: Appl. Phys. A 63, 103 (1996)

    ADS  Google Scholar 

  7. P. Schwab, J. Heitz, S. Proyer, D. Bäuerle, P. Simon: Appl. Phys. A 53, 282 (1991)

    Article  ADS  Google Scholar 

  8. J. Krüger, W. Kautek: Proc. SPIE 2403, 436 (1995)

    Article  ADS  Google Scholar 

  9. H.M. Phillips, R.A. Sauerbrey: Opt. Eng. 32, 2424 (1993)

    Article  ADS  Google Scholar 

  10. S. Preuss, E. Matthias, M. Stuke: Appl. Phys. A 59, 79 (1994)

    Article  ADS  Google Scholar 

  11. S. Preuss, M. Späth, Y. Zhang, M. Stuke: Appl. Phys. Lett. 62, 3049 (1993)

    Article  ADS  Google Scholar 

  12. J. Ihlemann, B. Wolff-Rottke, P. Simon: Appl. Phys. A 54, 363 (1992)

    Article  ADS  Google Scholar 

  13. S. Preuss, M. Stuke: Appl. Phys. Lett. 67, 338 (1995)

    Article  ADS  Google Scholar 

  14. D. Ashkenasi, H. Varel, A. Rosenfeld, F. Noack, E.E.B. Campbell: Nucl. Instrum. Meth. Phys. Res. B 122, 359 (1997)

    Article  ADS  Google Scholar 

  15. R. Srinivasan, E. Sutcliffe, B. Braren: Appl. Phys. Lett. 51, 1285 (1987)

    Article  ADS  Google Scholar 

  16. S. Küper, M. Stuke: Appl. Phys. B 44, 199 (1987)

    Article  ADS  Google Scholar 

  17. Z. Bor, B. Racz, G. Szabo, D. Xenakis, C. Kalpouzos, C. Fotakis: Appl. Phys. A 60, 365 (1995)

    Article  ADS  Google Scholar 

  18. B. Hopp, Z. Tóth, K. Gál, Á. Mechler, Zs. Bor, S.D. Moustaizis, S. Georgiou , C. Fotakis: Appl. Phys. A 69, S191 (1999)

  19. C.R. Phipps, Jr., T.P. Turner, R.F. Harrison, G.W. York, W.Z. Osborne, G.K. Anderson, X.F. Corlis, L.C. Haynes, H.S. Steele, K.C. Spicochi, T.R. King: J. Appl. Phys. 64, 1083 (1988)

    Article  ADS  Google Scholar 

  20. R. Fedosejevs, R. Ottmann, R. Sigel, G. Kühnle, S. Szatmári, F.P. Schäfer : Phys. Rev. Lett. 64, 1250 (1990)

    Article  ADS  Google Scholar 

  21. M.M. Murnane, H.C. Kapteyn, R.W. Falcone: Phys. Rev. Lett. 62, 155 (1989)

    Article  ADS  Google Scholar 

  22. S. Kubodera, K. Midorikawa, H. Tashiro, K. Toyoda: Appl. Phys. Lett. 66, 133 (1995)

    Article  ADS  Google Scholar 

  23. H.C. Liu, X.L. Mao, J.H. Yoo, R.E. Russo: Appl. Phys. Lett. 75, 1216 (1999)

    Article  ADS  Google Scholar 

  24. D. Riley, A.J. Langley, P.F. Taday, W. Shaikh, I. McCormack: J. Phys. D: Appl. Phys. 31, 515 (1998)

    Article  ADS  Google Scholar 

  25. Ch. Ziener, P.S. Foster, E.J. Divall, C.J. Hooker, M.H.R. Hutchinson, A.J. Langley, D. Neely: J. Appl. Phys. 93, 768 (2003)

    Article  ADS  Google Scholar 

  26. S. Szatmári, F.P. Schäfer: Opt. Commun. 68, 196 (1988)

    Article  ADS  Google Scholar 

  27. E.B. Treacy: IEEE J. Quant. Electron. QE 5, 454 (1969)

    Article  ADS  Google Scholar 

  28. Z. Bor, B. Racz: Opt. Commun. 54, 165 (1985)

    Article  ADS  Google Scholar 

  29. J.F. Frisoli, Y. Hefetz, T.F. Deutsch: Appl. Phys. B 52, 168 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ihlemann.

Additional information

PACS

52.50.Jm; 61.80.Ba; 42.65.Re

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beinhorn, F., Ihlemann, J., Luther, K. et al. Plasma effects in picosecond-femtosecond UV laser ablation of polymers. Appl. Phys. A 79, 869–873 (2004). https://doi.org/10.1007/s00339-004-2587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2587-0

Keywords

Navigation