Skip to main content
Log in

Reduction of capillary force for high-aspect ratio nanofabrication

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The wet processing of SU8 resist was modified in order to achieve a high-aspect ratio patterning with feature size of 100 nm. A final rinse in water, which makes a large contact angle on the resist (less wetting) was added to the procedure. This allowed considerable reduction of the capillary force, which is responsible for pattern distortions in three-dimensional (3D) lithography. 3D recording of high-aspect ratio (far=18) structures by holographic exposure using femtosecond pulses in SU8 resist was achieved using this modified development procedure. The thickness of the free-standing planes was approximately 100 nm. High fidelity of this recording method was confirmed by a Moiré pattern transfer into a developed SU8 pattern. In terms of focusing, the 100 nm feature size comprised 1/13-th of the diffraction limit. This modified development is applicable for wet processing when super-critical drying cannot be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deubel M, von Freyman G, Wegener M, Pereira S, Busch K, Soukulis CM (2004) Nature Mater 3:444

    Article  Google Scholar 

  2. Juodkazis S, Mizeikis V, Seet KK, Miwa M, Misawa H (2005) Nanotechnology 16:846

    Article  ADS  Google Scholar 

  3. Israelachvili JN (1992) Intermolecular and Surface Forces. Academic Press, London, 2nd ed

    Google Scholar 

  4. Namatsu H, Kurihara K, Nagase M, Iwadate K, Murase K (1995) Appl Phys Lett 66:2655

    Article  ADS  Google Scholar 

  5. Ashby MF, Gibson LJ, Wegst U, Olive R (1995) Proc Roy Soc Lond A 450:123

    ADS  Google Scholar 

  6. McHugh MA, Krukonis VJ (1994) Supercritical Fluid Extraction. Butterworth-Heinemann, Boston, 2nd ed

    Google Scholar 

  7. Eckert CA, Knutson BL, Debendetti PG (1996) Nature 383:313

    Article  ADS  Google Scholar 

  8. Weissberger A (ed) (1986) Organic Solvents. Physical Properties and Methods of Purification. John Wiley & Sons, Inc, New York, 4th ed

    Google Scholar 

  9. Kondo T, Matsuo S, Juodkazis S, Misawa H (2001) Appl Phys Lett 79:725

    Article  ADS  Google Scholar 

  10. Kondo T, Matsuo S, Juodkazis S, Mizeikis V, Misawa H (2003) Appl Phys Lett 82:2758

    Article  ADS  Google Scholar 

  11. Kondo T, Yamasaki K, Juodkazis S, Matsuo S, Mizeikis V, Misawa H (2004) Thin Solid Films 453–454:550

    Article  Google Scholar 

  12. Tanaka T, Morigami M, Atoda N (1993) Jpn J Appl Phys 32:6059

    Article  ADS  Google Scholar 

  13. Miwa M, Douoka K, Yoneyama S, Tuchitani S, Kosihmoto Y, Kaneko R (2005) In: A El-Fatatry (ed) MOEMS and Miniaturized Systems V. SPIE, Bellingham, WA, doi: 10.1117/12.589197, pp 6–13

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Misawa.

Additional information

PACS

81.05.-t; 81.07.-b; 81.16.-c; 81.40.-z; 81.65.-b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, T., Juodkazis, S. & Misawa, H. Reduction of capillary force for high-aspect ratio nanofabrication. Appl. Phys. A 81, 1583–1586 (2005). https://doi.org/10.1007/s00339-005-3337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3337-7

Keywords

Navigation