Skip to main content
Log in

Symmetric and antisymmetric modes of electromagnetic resonators

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we numerically study a new type of infrared resonator structure, whose unit cell consists of paired split-ring resonators (SRRs). At different resonant frequencies, the magnetic dipoles induced from the two SRRs within one unit cell can be parallel or antiparallel, which are defined as symmetric and antisymmetic modes, respectively. Detailed simulation indicates that the symmetric mode is due to magnetic coupling to resonators, in which the effective permeability could be negative. However, the antisymmetric mode originating from strong electric coupling may contribute to negative effective permittivity. Our new electromagnetic resonators with pronounced magnetic as well as electric responses could provide a new pathway to design negative index materials (NIMs) in the optical region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.G. Veselago, Sov. Phys. Uspekhi 10, 509 (1968)

    Article  Google Scholar 

  2. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  3. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)

    Article  ADS  Google Scholar 

  4. T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang, Science 303, 1494 (2004)

    Article  ADS  Google Scholar 

  5. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J.F. Zhou, T. Koschny, C.M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005)

    Article  ADS  Google Scholar 

  6. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  7. N. Fang, H. Lee, C. Sun, X. Zhang, Science 308, 5721 (2005)

    Article  Google Scholar 

  8. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Technol. 47, 2075 (1999)

    Article  Google Scholar 

  9. G. Dolling, C. Enkrich, M. Wegener, J.F. Zhou, C.M. Soukoulis, S. Linden, Opt. Lett. 30, 3198 (2005)

    Article  ADS  Google Scholar 

  10. A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, J. Petrovic, Nature 438, 335 (2005)

    Article  ADS  Google Scholar 

  11. P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Nano Lett. 4, 899 (2004)

    Article  Google Scholar 

  12. D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Phys. Rev. B 65, 195104 (2002)

    Article  ADS  Google Scholar 

  13. T. Koschny, P. Markos, E.N. Economou, D.R. Smith, D.C. Vier, C.M. Soukoulis, Phys. Rev. B 71, 245105 (2005)

    Article  ADS  Google Scholar 

  14. D. Schurig, J.J. Mock, D.R. Smith, Appl. Phys. Lett. 88, 041109 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Zhang.

Additional information

PACS

78.20.Ci; 73.20.Mf; 42.25.Bs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Fang, N., Wu, D. et al. Symmetric and antisymmetric modes of electromagnetic resonators. Appl. Phys. A 87, 171–174 (2007). https://doi.org/10.1007/s00339-006-3837-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3837-0

Keywords

Navigation