Skip to main content
Log in

Growth of nanostructures of Zn/ZnO by thermal evaporation and their application for room-temperature sensing of H 2 S gas

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO micro- and nanostructures were prepared by thermal evaporation of Zn and a mixture of ZnO with graphite. On heating Zn powder in a quartz tube at temperatures between 600 °C to 800 °C, radial growth of nanowires was observed on the source. On increasing the temperature to 900 °C, various interesting micro- and nanostructures of Zn and ZnO were observed to have deposited all over the quartz tube. On the other hand, when ZnO was heated in the presence of graphite, predominant growth of ZnO nanotetrapods was observed. Nanowires and tetrapods of ZnO were characterized by photoluminescence measurements and were found to show significantly improved response for detection of H2S gas at room temperature when compared with earlier studies. The response was seen to improve with increase in oxygen vacancies in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.P. Chatterjee, P. Mitra, A.K. Mukhopadhyay, J. Mater. Sci. 34, 4225 (1999)

    Article  Google Scholar 

  2. T. Yamazaki, S. Wada, T. Noma, T. Suzuki, Sens. Actuators B 14, 594 (1993)

    Article  Google Scholar 

  3. Z. Chen, N. Wu, Z. Shan, M. Zhao, S. Li, C.B. Jiang, M.K. Chyu, S.X. Mao, Scripta Mater. 52, 63 (2005)

    Article  Google Scholar 

  4. J.-H. Park, Y.-J. Choi, J.-G. Park, J. Eur. Ceram. Soc. 25, 2037 (2005)

    Article  Google Scholar 

  5. J.-H. Park, Y.-J. Choi, J.-G. Park, J. Cryst. Growth 280, 161 (2005)

    Article  Google Scholar 

  6. Z.L. Wang, Mater. Today 7, 26 (2004)

    Article  Google Scholar 

  7. Z.L. Wang, J. Phys. 16, R829 (2004)

    Google Scholar 

  8. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  9. L. Vayssieres, Adv. Mater. 15, 464 (2003)

    Article  Google Scholar 

  10. C. Liu, J.A. Zapien, Y. Yao, X. Meng, C.S. Lee, S. Fan, Y. Lifshitz, S.T. Lee, Adv. Mater. 15, 838 (2003)

    Article  Google Scholar 

  11. S.Y. Li, C.Y. Lee, T.Y. Tseng, J. Cryst. Growth 247, 357 (2003)

    Article  Google Scholar 

  12. P.X. Gao, Y. Ding, Z.L. Wang, Nano Lett. 3, 1315 (2003)

    Article  Google Scholar 

  13. S.C. Lyu, Y. Zhang, C.J. Lee, H. Ruh, H.J. Lee, Chem. Mater. 15, 3294 (2003)

    Article  Google Scholar 

  14. Y.-K. Tseng, C.-J. Huang, H.-M. Cheng, K.-S. Liu, I.-C. Chen, Adv. Funct. Mater. 13, 811 (2003)

    Article  Google Scholar 

  15. S.J. Chen, Y.C. Liu, Y.M. Lu, J.Y. Zhang, D.Z. Shen, X.W. Fan, J. Cryst. Growth 289, 55 (2006)

    Article  Google Scholar 

  16. P. Feng, Q. Wan, T.H. Wang, Appl. Phys. Lett. 87, 213111 (2005)

    Article  ADS  Google Scholar 

  17. X. Jiaqiang, C. Yuping, C. Daoyong, S. Jianian, Sens. Actuators B 113, 526 (2006)

    Article  Google Scholar 

  18. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004)

    Article  ADS  Google Scholar 

  19. C. Baratto, G. Sberveglieri, A. Onischuk, B. Caruso, S. Di Stasio, Sens. Actuators B 100, 261 (2004)

    Article  Google Scholar 

  20. T. Gao, T.H. Wang, Appl. Phys. A 80, 1451 (2005)

    Article  ADS  Google Scholar 

  21. H.T. Wang, B.S. Kang, F. Ren, L.C. Tien, P.W. Sadik, D.P. Norton, S.J. Pearton, J. Lin, Appl. Phys. A 81, 1117 (2005)

    Article  ADS  Google Scholar 

  22. H.T. Wang, B.S. Kang, F. Ren, L.C. Tien, P.W. Sadik, D.P. Norton, S.J. Pearton, J. Lin, Appl. Phys. Lett. 86, 243503 (2005)

    Article  Google Scholar 

  23. C.S. Rout, S. Hari Krishna, S.R.C. Vivekchand, A. Govindaraj, C.N.R. Rao, Chem. Phys. Lett. 418, 586 (2006)

    Article  Google Scholar 

  24. C. Xiangfeng, J. Dongli, A.B. Djurišic, Y.H. Leung, Chem. Phys. Lett. 401, 426 (2005)

    Article  Google Scholar 

  25. X.-H. Wang, Y.-F. Ding, J. Zhang, Z.-Q. Zhu, S.-Z. You, S.-Q. Chen, J. Zhu, Sens. Actuators B 115, 421 (2006)

    Article  Google Scholar 

  26. X. Wang, J. Zhang, Z. Zhu, J. Zhu, Colloid Surf. A 276, 59 (2006)

    Article  Google Scholar 

  27. C. Wang, X. Chu, M. Wu, Sens. Actuators B 113, 320 (2006)

    Article  Google Scholar 

  28. M. Kaur, S.K. Gupta, C.A. Betty, V. Saxena, V.R. Katti, S.C. Gadkari, J.V. Yakhmi, Sens. Actuators B 107, 360 (2005)

    Article  Google Scholar 

  29. A. Sekar, S.H. Kim, A. Umar, Y.B. Hahn, J. Cryst. Growth 277, 471 (2005)

    Article  Google Scholar 

  30. H.Y. Dang, J. Wang, S.S. Fan, Nanotechnology 14, 738 (2003)

    Article  ADS  Google Scholar 

  31. Z. Chen, Z. Shan, S. Li, C.B. Liang, S.X. Mao, J. Cryst. Growth 265, 482 (2004)

    Article  Google Scholar 

  32. R. Dingle, Phys. Rev. Lett. 23, 579 (1969)

    Article  ADS  Google Scholar 

  33. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996)

    Article  ADS  Google Scholar 

  34. B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001)

    Article  ADS  Google Scholar 

  35. Q. Wan, T.H. Wang, J.C. Zhao, Appl. Phys. Lett. 87, 83105 (2005)

    Article  ADS  Google Scholar 

  36. C. Xiangfeng, J. Dongli, A.B. Djurišic, Y.H. Leung, Chem. Phys. Lett. 401, 426 (2005)

    Article  Google Scholar 

  37. Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Appl. Surf. Sci. 242, 212 (2005)

    Article  ADS  Google Scholar 

  38. P. Feng, Q. Wan, T.H. Wang, Appl. Phys. Lett. 87, 213111 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.K. Gupta.

Additional information

PACS

78.55.Et; 07.07.Df

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, M., Bhattacharya, S., Roy, M. et al. Growth of nanostructures of Zn/ZnO by thermal evaporation and their application for room-temperature sensing of H 2 S gas. Appl. Phys. A 87, 91–96 (2007). https://doi.org/10.1007/s00339-006-3858-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3858-8

Keywords

Navigation