Skip to main content

Advertisement

Log in

Examination of the laser-induced variations in the chemical etch rate of a photosensitive glass ceramic

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Previous studies in our laboratory have reported that the chemical etch rate of a commercial photosensitive glass ceramic (FoturanTM, Schott Corp., Germany) in dilute hydrofluoric acid is strongly dependent on the incident laser irradiance during patterning at λ=266 nm and λ=355 nm. To help elucidate the underlying chemical and physical processes associated with the laser-induced variations in the chemical etch rate, several complimentary techniques were employed at various stages of the UV laser exposure and thermal treatment. X-ray diffraction (XRD) was used to identify the crystalline phases that are formed in Foturan following laser irradiation and annealing, and monitor the crystalline content as a function of laser irradiance at λ=266 nm and λ=355 nm. The XRD results indicate the nucleation of lithium metasilicate (Li2SiO3) crystals as the exclusive phase following laser irradiation and thermal treatment at temperatures not exceeding 605 °C. The XRD studies also show that the Li2SiO3 density increases with increasing laser irradiance and saturates at high laser irradiance. For our thermal treatment protocol, the average Li2SiO3 crystal diameters are 117.0±10.0 nm and 91.2±5.8 nm for λ=266 nm and λ=355 nm, respectively. Transmission electron microscopy (TEM) was utilized to examine the microscopic structural features of the lithium metasilicate crystals. The TEM results reveal that the growth of lithium metasilicate crystals proceeds dendritically, and produces Li2SiO3 crystals that are ∼700–1000 nm in length for saturation exposures. Optical transmission spectroscopy (OTS) was used to study the growth of metallic silver clusters that act as nucleation sites for the Li2SiO3 crystalline phase. The OTS results show that the (Ag0)x cluster concentration has a dependence on incident laser irradiance that is similar to the etch rate ratios and Li2SiO3 concentration. A comparison between the XRD and optical transmission results and our prior etch rate results show that the etch rate contrast and absolute etch rates are dictated by the Li2SiO3 concentration, which is in turn governed by the (Ag0)x cluster concentration. These results characterize the relationship between the laser exposure and chemical etch rate for Foturan, and permit a more detailed understanding of the photophysical processes that occur in the general class of photostructurable glass ceramic materials. Consequently, these results may also influence the laser processing of other photoactive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Brannon, J. Greer, H. Helvajian, Laser Processing for Microengineering Applications. In: Microengineering Aerospace Systems, ed. by H. Helvajian (The Aerospace Press, El Segundo, CA, 1999)

  2. A. Huang, W.W. Hansen, S.W. Janson, H. Helvajian, Proc. SPIE 4559, 164 (2001)

    Article  ADS  Google Scholar 

  3. A. Huang, W.W. Hansen, S.W. Janson, H. Helvajian, Proc. SPIE 4637, 297 (2002)

    Article  ADS  Google Scholar 

  4. H. Becker, M. Arundell, A. Harnisch, D. Hulsenberg, Sens. Actuators B 86, 271 (2002)

    Article  Google Scholar 

  5. W. Holand, G.H. Beall, Glass-Ceramic Technology (The American Ceramic Society, Westerville, OH, 2002)

    Google Scholar 

  6. M. Toner, H. Buettner, Biotechnol. Prog. 14, 355 (1998)

    Article  Google Scholar 

  7. S.D. Stookey, Indust. Engin. Chem. 41, 856 (1949)

    Google Scholar 

  8. S.D. Stookey, Indust. Engin. Chem. 45, 115 (1953)

    Google Scholar 

  9. F.E. Livingston, H. Helvajian, Photophysical Processes that Lead to Ablation-Free Microfabrication, in: Glass-Ceramic Materials, in: 3D Laser Microfabrication, ed. by H. Misawa, S. Juodkazis (Wiley-VCH, Weinheim, 2006) and references therein

  10. P.J. Brock, M.D. Levenson, J.M. Zavislan, J.R. Lyerla, J. Vac. Sci. Technol. B 9, 3155 (1991)

    Article  Google Scholar 

  11. T.R. Dietrich, W. Ehrfeld, M. Lacher, M. Kramer, B. Speit, Microelectron. Eng. 30, 497 (1996)

    Article  Google Scholar 

  12. Y. Cheng, K. Sugioka, M. Masuda, K. Shihoyama, K. Toyoda, K. Midorikawa, Proc. SPIE 5063, 103 (2003)

    Article  ADS  Google Scholar 

  13. W.W. Hansen, S.W. Janson, H. Helvajian, Proc. SPIE 2991, 104 (1997)

    Article  ADS  Google Scholar 

  14. J. Kim, H. Berberoglu, X. Xu, J. Microlith. Microfab. Microsyst. 3, 478 (2004)

    Article  Google Scholar 

  15. F.E. Livingston, H. Helvajian, Proc. SPIE 4830, 189 (2003)

    Article  ADS  Google Scholar 

  16. F.E. Livingston, H. Helvajian, Appl. Phys. A 81, 1569 (2005)

    Article  ADS  Google Scholar 

  17. F.E. Livingston, H. Helvajian, NATO Advance Science Institutes – Photon Based Nanoscience and Nanobiotechnology 239, 225 (2006)

  18. M. Masuda, K. Sugioka, Y. Cheng, T. Hongo, K. Shihoyama, H. Takai, I. Miyamoto, K. Midorikawa, Appl. Phys. A 78, 1029 (2004)

    Article  ADS  Google Scholar 

  19. K. Sugioka, M. Masuda, T. Hongo, Y. Cheng, K. Shihoyama, K. Midorikawa, Appl. Phys. A 79, 815 (2004)

    Article  ADS  Google Scholar 

  20. V. Arbuzov, J. Non-Cryst. Solids 253, 37 (1999)

    Article  Google Scholar 

  21. J.S. Stroud, J. Chem. Phys. 35, 844 (1961)

    Article  Google Scholar 

  22. J.S. Stroud, J. Chem. Phys. 37, 836 (1962)

    Article  Google Scholar 

  23. M. Talkenberg, E.W. Kreutz, A. Horn, M. Jacquorie, R. Poprawe, Proc. SPIE 4637, 258 (2002)

    Article  ADS  Google Scholar 

  24. A. Berezhnoi, Glass-Ceramics and Photo-Sitalls (Plenum Press, New York, 1970)

    Google Scholar 

  25. F.E. Livingston, W.W. Hansen, A. Huang, H. Helvajian, Proc. SPIE 4637, 404 (2002)

    Article  ADS  Google Scholar 

  26. M.H. Read, Thin Solid Films 10, 123 (1972)

    Article  Google Scholar 

  27. K. Tao, C.A. Hewett, Rev. Sci. Instrum. 58, 212 (1987)

    Article  ADS  Google Scholar 

  28. F.E. Livingston, P.M. Adams, H. Helvajian, Proc. SPIE 5662, 44 (2004)

    Article  ADS  Google Scholar 

  29. F.E. Livingston, P.M. Adams, H. Helvajian, Appl. Surf. Sci. 247, 526 (2005)

    Article  ADS  Google Scholar 

  30. M.F. Barker, T.-H. Wang, P.F. James, Phys. Chem. Glass. 29, 240 (1988)

    Google Scholar 

  31. M.K. Brun, A.S. Bhalla, K.E. Spear, L.E. Cross, R.S. Berger, J. Cryst. Growth 478, 335 (1979)

    Article  Google Scholar 

  32. L.L. Burgner, M.C. Weinberg, P. Lucas, P.C. Soares Jr., E.D. Zanotto, J. Non-Cryst. Solids 255, 264 (1999)

    Article  Google Scholar 

  33. J. Deubener, R. Bruckner, M. Sternitzke, J. Non-Cryst. Solids 163, 1 (1993)

    Article  Google Scholar 

  34. C.J.R. Gonzalez-Oliver, P.S. Johnson, P.F. James, J. Mater. Sci. 14, 1159 (1979)

    Article  Google Scholar 

  35. J.R. Jacquin, M. Tomozawa, J. Non-Cryst. Solids 190, 233 (1995)

    Article  Google Scholar 

  36. A.M. Kalinina, V.M. Fokin, G.A. Sycheva, V.N. Filipovich, in Proc. 14th Int. Congr. on Glass, Vol. 1 (Central Glass and Ceramic Research Institute, Calcutta, 1986)

  37. P.C. Soares Jr., P.A.P. Nascente, E.D. Zanotto, Phys. Chem. Glass. 43, 143 (2002)

    Google Scholar 

  38. P.C. Soares Jr., E.D. Zanotto, V.M. Fokin, H. Jain, J. Non-Cryst. Solids 331, 217 (2003)

    Article  Google Scholar 

  39. G.A. Sycheva, Phys. Chem. Glass. 25, 501 (1999)

    Google Scholar 

  40. U. Kreibig, Appl. Phys. 10, 255 (1976)

    Article  ADS  Google Scholar 

  41. F.E. Livingston, H. Helvajian, unpublished results

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.E. Livingston.

Additional information

PACS

42.62.-b; 61.43.Fs; 81.05.Kf; 81.10.-h; 83.80.Ab

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livingston, F., Adams, P. & Helvajian, H. Examination of the laser-induced variations in the chemical etch rate of a photosensitive glass ceramic. Appl. Phys. A 89, 97–107 (2007). https://doi.org/10.1007/s00339-007-4197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4197-0

Keywords

Navigation