Skip to main content
Log in

Phosphorescence properties of sol–gel derived ruby measured as functions of temperature and Cr3+ content

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel approach for the contactless measurement of surface temperatures is to evaluate the temperature dependent phosphorescence properties of chromium doped aluminium oxide (ruby) coatings, such as phosphorescence intensity, spectral distribution, or the phosphorescence lifetime. However, these properties are also affected by the chromium content in the films. In the present study the phosphorescence lifetimes were studied for the first time as a function of the chromium content. We use a simple sol–gel depositing technique for the preparation of precisely doped ruby coatings in Si(100) substrates. These coatings (Cr-to-Al-ratios y between 0% and 6.8 at. %) are well suited for studying the influence of the chromium concentration on the phosphorescence properties: at room temperature (294 K), the phosphorescence intensity is strongly affected by the chromium doping (maximum at y∼1–1.5%) while the spectrum shifts only slightly with varying chromium content. The phosphorescence lifetime τ at 294 K remains constant with varying Cr3+ content below y∼1.1%, and decreases strongly above y∼1.1%. Thus, ruby doped with y∼1% seems to be most promising as a temperature sensor because it shows the highest phosphorescence intensity and a low variance in the phosphorescence lifetimes. Due to the latter property the temperature evaluation from τ is less affected by imprecise doping. The phosphorescence lifetimes of several sol–gel ruby coatings (y=1.1%) on Si(100) substrates were measured as a function of the temperature to be between 2.7 ms at 294 K and 4 μs at 833 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Lakowicz, H. Szmacinski, QELS’95 16, 176 (1995)

  2. K. Kohse-Hoinghaus, R.S. Barlow, M. Alden, J. Wolfrum, Proc. Combust. Institute 39, 89 (2004)

    Google Scholar 

  3. J. Brübach, A. Patt, A. Dreizler, Appl. Phys. B 83, 499 (2006)

    Article  ADS  Google Scholar 

  4. S.W. Allison, G.T. Gillies, Rev. Sci. Instrum. 68, 2615 (1997)

    Article  ADS  Google Scholar 

  5. W. Koechner, Solid-State Laser Engineering in: Spinger Series in Optical Science (Springer, Berlin, 1988)

  6. H.C. Seat, J.H. Sharp, IEEE Trans. Instrum. Meas. 53, 140 (2004)

    Google Scholar 

  7. H. Aizawa, N. Ohishi, S. Ogawa, Rev. Sci. Instrum. 73, 3656 (2002)

    Article  ADS  Google Scholar 

  8. Z. Ghassemloy, K.T.V. Grattan, D. Lynch, Rev. Sci. Instrum. 60, 87 (1989)

    Article  ADS  Google Scholar 

  9. I. Basarab, Z. Ghassemloy, A.J. Shaw, Rev. Sci. Instrum. 62, 1321 (1990)

    Article  ADS  Google Scholar 

  10. F. Anghel, C. Iliescu, K.T.V. Grattan, Z.Y. Zhang, Rev. Sci. Instrum. 66, 2611 (1995)

    Article  ADS  Google Scholar 

  11. R.R. Sholes, J.G. Small, Rev. Sci. Instrum. 51, 882 (1980)

    Article  ADS  Google Scholar 

  12. J.E. Sundgren, H.T.G. Hentzell, J. Vac. Sci. Technol. A 4, 2259 (1986)

    Article  ADS  Google Scholar 

  13. J. Müller, M. Schierling, E. Zimmermann, D. Neuschütz, Surf. Coat. Technol. 120121, 16 (1999)

    Google Scholar 

  14. H. Yu, D.R. Clarke, J. Am. Ceram. Soc. 85, 1966 (2002)

    Article  Google Scholar 

  15. C. Pflitsch, D. Viefhaus, B. Atakan, Chem. Vapor. Depos. 13, 420 (2007)

    Google Scholar 

  16. C. Pflitsch, R. Siddiqi, B. Atakan, companion paper, submitted to Chem. Mater.

  17. H. Aizawa, M. Sekiguchi, T. Katsumata, S. Komuro, T. Morikawa, Rev. Sci. Instrum. 77, 044902 (2006)

    Article  ADS  Google Scholar 

  18. T. Liu, B.T. Campbell, S.P. Burns, J.P. Sullivan, Appl. Mech. Rev. 50, 227 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pflitsch.

Additional information

PACS

07.20.Dt; 78.55.-m; 78.66.-w

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pflitsch, C., Siddiqui, R. & Atakan, B. Phosphorescence properties of sol–gel derived ruby measured as functions of temperature and Cr3+ content. Appl. Phys. A 90, 527–532 (2008). https://doi.org/10.1007/s00339-007-4315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4315-z

Keywords

Navigation