Skip to main content
Log in

Effect of lithium ion content on the lithium ion conductivity of the garnet-like structure Li5+xBaLa2Ta2O11.5+0.5x (x = 0–2)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report systematic studies on the transport properties by varying the lithium oxide content of the garnet-based solid electrolyte Li5+xBaLa2Ta2O11.5+0.5x (x=0, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00) for understanding the ionic conductivity dependence on the crystal lattice parameter and carrier concentration. Powder X-ray diffraction data of Li5+xBaLa2Ta2O11.5+0.5x (x=0, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00) indicate the existence of the garnet-like structure for any of the compositions. The cubic lattice parameter was found to increase with increasing x and reaches a maximum at x=1.00, then decreases slightly with a further increase in x. Impedance measurements obtained at 50 °C indicate a maximum of the grain-boundary resistance (Rgb) contribution to the total resistance (Rb+Rgb) at x=0.0 and a considerable decrease with increase in lithium concentration. The total (bulk + grain-boundary) and bulk ionic conductivity increase with increasing lithium content and reach a maximum at x=1.00 and then decrease slightly with further increase in x. Among the investigated compounds, Li6BaLa2Ta2O12 exhibits the highest total (bulk + grain-boundary) and bulk ionic conductivity of 1.5×10-4 and 1.8×10-4 S/cm at 50 °C, respectively. The results obtained in the present investigation of the Li5+xBaLa2Ta2O11.5+0.5x (x=0–2) series clearly revealed that the lithium content plays a major role in decreasing the grain boundary resistance contribution to the total resistance and also in increasing the ionic conductivity of the garnet-like compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.T.S. Irvine, A.R. West, In: High Conductivity Ionic Conductors, Recent Trends and Application, ed. by T. Takahashi (World Scientific, Singapore, 1989), pp. 201–223

    Google Scholar 

  2. A.D. Robertson, A.R. West, A.G. Ritchie, Solid State Ionics 104, 1 (1997)

    Article  Google Scholar 

  3. H. Aono, H. Imanaka, G.Y. Adachi, Acc. Chem. Res. 27, 265 (1994)

    Article  Google Scholar 

  4. G.Y. Adachi, N. Imanaka, H. Aono, Adv. Mater. 8, 127 (1996)

    Article  Google Scholar 

  5. Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, W. Wakihara, Solid State Commun. 86, 689 (1993)

    Article  ADS  Google Scholar 

  6. P. Birke, S. Scharner, R.A. Huggins, W. Weppner, J. Electrochem. Soc. 144, L167 (1997)

    Article  Google Scholar 

  7. O. Bohnke, C. Bohnke, J.L. Fourquet, Solid State Ionics 91, 21 (1996)

    Article  Google Scholar 

  8. V. Thangadurai, H. Kaack, W. Weppner, J. Am. Ceram. Soc. 86, 437 (2003)

    Article  Google Scholar 

  9. V. Thangadurai, S. Adams, W. Weppner, Chem. Mater. 16, 2998 (2004)

    Article  Google Scholar 

  10. V. Thangadurai, W. Weppner, J. Am. Ceram. Soc. 88, 411 (2005)

    Article  Google Scholar 

  11. V. Thangadurai, W. Weppner, Adv. Funct. Mater. 15, 107 (2005)

    Article  Google Scholar 

  12. V. Thangadurai, W. Weppner, J. Power Sources 142, 339 (2005)

    Google Scholar 

  13. V. Thangadurai, W. Weppner, J. Solid State Chem. 179, 974 (2006)

    Article  ADS  Google Scholar 

  14. R. Murugan, V. Thangadurai, W. Weppner, J. Electrochem. Soc. 155, A90 (2008)

    Article  Google Scholar 

  15. R. Murugan, V. Thangadurai, W. Weppner, Ionics 13, 195 (2007)

    Article  Google Scholar 

  16. D. Mazza, Mater. Lett. 7, 205 (1988)

    Article  Google Scholar 

  17. H. Hyooma, K. Hayashi, Mater. Res. Bull. 23, 399 (1988)

    Article  Google Scholar 

  18. E.J. Cussen, Chem. Commun. 412 (2006)

  19. M.P. O’Callaghan, D.R. Lynham, E.J. Cussen, G.Z. Chen, Chem. Mater. 18, 4681 (2006)

    Article  Google Scholar 

  20. H. Ullmann, N. Trofimenko, F. Tietz, D. Stover, A.A. Khanlou, Solid State Ionics 138, 79 (2000)

    Article  Google Scholar 

  21. M.P. O’Callaghan, E.J. Cussen, Chem. Commun. 2048 (2007)

  22. V. Thangadurai, R.A. Huggins, W. Weppner, J. Power Sources 108, 64 (2002)

    Google Scholar 

  23. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    Article  Google Scholar 

  24. J.E. Bauerle, J. Phys. Chem. Solids 30, 2657 (1969)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Weppner.

Additional information

PACS

66.10.Ed; 82.45.Gj; 82.47.Aa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murugan, R., Thangadurai, V. & Weppner, W. Effect of lithium ion content on the lithium ion conductivity of the garnet-like structure Li5+xBaLa2Ta2O11.5+0.5x (x = 0–2). Appl. Phys. A 91, 615–620 (2008). https://doi.org/10.1007/s00339-008-4494-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4494-2

Keywords

Navigation