Skip to main content
Log in

Surface engineering with ion beams: from self-organized nanostructures to ultra-smooth surfaces

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Low-energy ion-beam sputtering, i.e. the removal of atoms from a surface due to the impact of energetic ions or atoms, is an inherent part of numerous surface processing techniques. Besides the actual removal of material, this surface erosion process often results in a pronounced alteration of the surface topography. Under certain conditions, sputtering results in the formation of well-ordered patterns. This self-organized pattern formation is related to a surface instability between curvature-dependent sputtering that roughens the surface and smoothing by different surface relaxation mechanisms. If the evolution of surface topography is dominated by relaxation mechanisms, surface smoothing can occur. In this presentation the current status of self-organized pattern formation and surface smoothing by low-energy ion-beam erosion of Si and Ge is summarized. In detail it will be shown that a multitude of patterns as well as ultra-smooth surfaces can develop, particularly on Si surfaces. Additionally, the most important experimental parameters that control these processes are discussed. Finally, examples are given for the application of low-energy ion beams as a novel approach for passive optical device engineering for many advanced optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Haymann, CR Acad. Sci. Paris 248, 2472 (1959)

    Google Scholar 

  2. M. Navez, C. Sella, D. Chaperot, CR Acad. Sci. Paris 254, 240 (1962)

    Google Scholar 

  3. G. Carter, M.J. Nobes, F. Paton, J.S. Williams, Radiat. Eff. 33, 65 (1977)

    Article  Google Scholar 

  4. K. Elst, W. Vandervorst, J. Alay, J. Snauwaert, L. Hellemans, J. Vac. Sci. Technol. B 11, 1968 (1993)

    Article  Google Scholar 

  5. G. Carter, V. Vishnyakov, Phys. Rev. B 54, 17647 (1996)

    Article  ADS  Google Scholar 

  6. J.J. Vajo, R.E. Doty, E.-H. Cirlin, J. Vac. Sci. Technol. A 14, 2709 (1996)

    Article  ADS  Google Scholar 

  7. Z.X. Jiang, P.F.A. Alkemade, Appl. Phys. Lett. 73, 315 (1998)

    Article  ADS  Google Scholar 

  8. J. Erlebacher, M.J. Aziz, E. Chason, M.B. Sinclair, J.A. Floro, Phys. Rev. Lett. 82, 2330 (1999)

    Article  ADS  Google Scholar 

  9. J. Erlebacher, M.J. Aziz, E. Chason, M.B. Sinclair, J.A. Floro, J. Vac. Sci. Technol. A 18, 115 (2000)

    Article  ADS  Google Scholar 

  10. A.-D. Brown, J. Erlebacher, W.L. Chan, E. Chason, Phys. Rev. Lett. 95, 056101 (2005)

    Article  ADS  Google Scholar 

  11. A.-D. Brown, J. Erlebacher, Phys. Rev. B 72, 075350 (2005)

    Article  ADS  Google Scholar 

  12. T.K. Chini, M.K. Sanyal, S.R. Bhattacharyya, Phys. Rev. B 66, 153404 (2002)

    Article  ADS  Google Scholar 

  13. S. Hazra, T.K. Chini, M.K. Sanyal, J. Grenzer, U. Pietsch, Phys. Rev. B 70, 121307 (2004)

    Article  ADS  Google Scholar 

  14. E. Chason, T.M. Mayer, B.K. Kellerman, D.T. McIlroy, A.J. Howard, Phys. Rev. Lett. 72, 3040 (1994)

    Article  ADS  Google Scholar 

  15. S.W. MacLaren, J.E. Baker, N.L. Finnegan, C.M. Loxton, J. Vac. Sci. Technol. A 10, 468 (1992)

    Article  ADS  Google Scholar 

  16. J.B. Malherbe, CRC Crit. Rev. Solid State Mater. Sci. 19, 55 (1994) and references therein

  17. C.M. Demanet, J.B. Malherbe, N.G. van der Berg, V. Sankar, Surf. Interface Anal. 23, 433 (1995)

    Google Scholar 

  18. C.M. Demanet, K.V. Sankar, J.B. Malherbe, N.G. van der Berg, R.Q. Odendaal, Surf. Interface Anal. 24, 497 (1996)

    Google Scholar 

  19. C.M. Demanet, K.V. Sankar, J.B. Malherbe, Surf. Interface Anal. 24, 503 (1996)

    Google Scholar 

  20. S. Rusponi, G. Costantini, C. Boragno, U. Valbusa, Phys. Rev. Lett. 81, 4184 (1998)

    Article  ADS  Google Scholar 

  21. S. Rusponi, G. Costantini, C. Boragno, U. Valbusa, Phys. Rev. Lett. 81, 2735 (1998)

    Article  ADS  Google Scholar 

  22. S. Rusponi, C. Boragno, U. Valbusa, Phys. Rev. Lett. 78, 2795 (1997)

    Article  ADS  Google Scholar 

  23. W.L. Chan, N. Pavenayotin, E. Chason, Phys. Rev. B 69, 245413 (2004)

    Article  ADS  Google Scholar 

  24. W.L. Chan, E. Chason, Phys. Rev. B 72, 165418 (2005)

    Article  ADS  Google Scholar 

  25. T.M. Mayer, E. Chason, A.J. Howard, J. Appl. Phys. 76, 1633 (1994)

    Article  ADS  Google Scholar 

  26. C.C. Umbach, R.L. Headrick, K.-C. Chang, Phys. Rev. Lett. 87, 246104 (2001)

    Article  ADS  Google Scholar 

  27. D. Flamm, F. Frost, D. Hirsch, Appl. Surf. Sci. 179, 95 (2001))

    Article  ADS  Google Scholar 

  28. A. Toma, F. Buatier de Mongeot, R. Buzio, G. Firpo, S.R. Bhattacharyya, C. Boragno, U. Valbusa, Nucl. Instrum. Methods B 230, 551 (2005)

    Article  ADS  Google Scholar 

  29. S. Habenicht, W. Bolse, K.P. Lieb, K. Reimann, U. Geyer, Phys. Rev. B 60, R2200 (1999)

    Article  ADS  Google Scholar 

  30. S. Habenicht, W. Bolse, H. Feldermann, U. Geyer, H. Hofsäss, K.P. Lieb, F. Roccaforte, Europhys. Lett. 50, 209 (2000)

    Article  ADS  Google Scholar 

  31. S. Habenicht, K.P. Lieb, W. Bolse, U. Geyer, F. Roccaforte, C. Ronning, Nucl. Instrum. Methods B 161163, 958 (2000)

  32. S. Habenicht, Phys. Rev. B 63, 125419 (2001)

    Article  ADS  Google Scholar 

  33. A. Datta, Y.-R. Wu, Y.L. Wang, Phys. Rev. B 63, 125407 (2001)

    Article  ADS  Google Scholar 

  34. E. Spiller, Appl. Phys. Lett. 54, 2293 (1989)

    Article  ADS  Google Scholar 

  35. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, H.L. Hartnagel, Science 285, 1551 (1999)

    Article  Google Scholar 

  36. F. Frost, A. Schindler, F. Bigl, Phys. Rev. Lett. 85, 4116 (2000)

    Article  ADS  Google Scholar 

  37. R. Gago, L. Vázquez, R. Cuerno, M. Varela, C. Ballesteros, J.M. Albella, Appl. Phys. Lett. 78, 3316 (2001)

    Article  ADS  Google Scholar 

  38. P. Sigmund, Phys. Rev. 184, 383 (1969)

    Article  ADS  Google Scholar 

  39. P. Sigmund, J. Mater. Sci. 8, 1545 (1973)

    Article  Google Scholar 

  40. R.M. Bradley, J.M.E. Harper, J. Vac. Sci. Technol. A 6, 2390 (1988)

    Article  ADS  Google Scholar 

  41. R. Cuerno, A.-L. Barabási, Phys. Rev. Lett. 74, 4746 (1995)

    Article  ADS  Google Scholar 

  42. R. Cuerno, H.A. Makse, S. Tomassone, S.T. Harrington, H.E. Stanley, Phys. Rev. Lett. 75, 4464 (1995)

    Article  ADS  Google Scholar 

  43. M. Rost, J. Krug, Phys. Rev. Lett. 75, 3894 (1995)

    Article  ADS  Google Scholar 

  44. S. Park, B. Kahng, H. Jeong, A.-L. Barabási, Phys. Rev. Lett. 83, 3486 (1999)

    Article  ADS  Google Scholar 

  45. M.A. Makeev, R. Cuerno, A.-L. Barabási, Nucl. Instrum. Methods B 197, 185 (2002)

    Article  ADS  Google Scholar 

  46. R.M. Bradley, Phys. Rev. E 54, 6149 (1996)

    Article  ADS  Google Scholar 

  47. M. Castro, R. Cuerno, L. Vàzquez, R. Gago, Phys. Rev. Lett. 94, 016102 (2005)

    Article  ADS  Google Scholar 

  48. S. Vogel, S.J. Linz, Phys. Rev. B 72, 035416 (2005)

    Article  ADS  Google Scholar 

  49. S. Vogel, S.J. Linz, Europhys. Lett. 76, 884 (2006)

    Article  ADS  Google Scholar 

  50. G. Carter, J. Phys. D Appl. Phys. 34, R1 (2001)

    Article  ADS  Google Scholar 

  51. U. Valbusa, C. Boragno, F. Buatier de Mongeot, J. Phys.: Condens. Matter 14, 8153 (2002)

    Article  ADS  Google Scholar 

  52. W.-L. Chan, E. Chasoner, J. Appl. Phys. 101, 121301 (2007)

    Article  ADS  Google Scholar 

  53. R. Behrisch, in Sputtering by Particle Bombardment: Experiments and Computer Calculations From Threshold to MeV Energies (Top. Appl. Phys. 110), ed. by R. Behrisch, W. Eckstein (Springer, Berlin Heidelberg New York, 2007)

  54. S. Facsko, H. Kurz, T. Dekorsy, Phys. Rev. B 63, 165329 (2001)

    Article  ADS  Google Scholar 

  55. S. Facsko, T. Bobek, H. Kurz, T. Dekorsy, S. Kyrsta, R. Cremer, Appl. Phys. Lett. 80, 130 (2002)

    Article  ADS  Google Scholar 

  56. F. Frost, B. Rauschenbach, Appl. Phys. A 77, 1 (2003)

    Article  ADS  Google Scholar 

  57. F. Frost, B. Ziberi, T. Höche, B. Rauschenbach, Nucl. Instrum. Methods B 216, 9 (2004)

    Article  ADS  Google Scholar 

  58. M. Tartz, Ph.D. thesis, University of Leipzig (2003)

  59. B. Ziberi, F. Frost, B. Rauschenbach, T. Höche, Appl. Phys. Lett. 87, 033113 (2005)

    Article  ADS  Google Scholar 

  60. B. Ziberi, F. Frost, T. Höche, B. Rauschenbach, Phys. Rev. B 72, 235310 (2005)

    Article  ADS  Google Scholar 

  61. B. Ziberi, F. Frost, B. Rauschenbach, Surf. Sci. 600, 3757 (2006)

    Article  ADS  Google Scholar 

  62. B. Ziberi, F. Frost, B. Rauschenbach, J. Vac. Sci. Technol. A 24, 1344 (2006)

    Article  Google Scholar 

  63. B. Ziberi, F. Frost, B. Rauschenbach, Appl. Phys. Lett. 88, 173115 (2006)

    Article  ADS  Google Scholar 

  64. B. Ziberi, F. Frost, M. Tartz, H. Neumann, B. Rauschenbach, Appl. Phys. Lett. 92, 063102 (2008)

    Article  ADS  Google Scholar 

  65. B. Ziberi, Ion Beam Induced Pattern Formation on Si and Ge Surfaces, Ph.D. thesis (Engelsdorfer Verlag, 2007)

  66. F. Frost, B. Ziberi, B. Rauschenbach, to be published

  67. B. Ziberi, F. Frost, H. Neumann, B. Rauschenbach, Thin Solid Films 459, 106 (2004)

    Article  Google Scholar 

  68. M. Moseler, P. Gumbsch, C. Casiraghi, A.C. Ferrari, J. Robertson, Science 309, 1545 (2005)

    Article  ADS  Google Scholar 

  69. W. Eckstein, Computer Simulation of Ion–Solid Interactions (Springer Ser. Mater. Sci. 10) (Springer, Berlin, 1991)

  70. F. Frost, A. Schindler, F. Bigl, Appl. Phys. A 66, 663 (1998)

    Article  ADS  Google Scholar 

  71. F. Frost, G. Lippold, K. Otte, D. Hirsch, A. Schindler, F. Bigl, J. Vac. Sci. Technol. A 17, 793 (1999)

    Article  ADS  Google Scholar 

  72. A. Schindler, T. Hänsel, F. Frost, G. Böhm, W. Frank, A. Nickel, T. Arnold, R. Schwabe, S. Gürtler, S. Görsch, B. Rauschenbach, Glass Sci. Technol. 78(Suppl. C), 111 (2005)

    Google Scholar 

  73. T. Hänsel, F. Frost, A. Nickel, A. Schindler, Vak. Forsch. Prax. 19, 24 (2007)

    Google Scholar 

  74. R. Fechner, A. Schindler, T. Hänsel, F. Bigl, in Precision Science and Technology for Perfect Surfaces, ed. by Y. Furukawa, Y. Mori, T. Kataoka (The Japan Society for Precision Engineering, Tokyo, 1999), p. 249

  75. F. Frost, R. Fechner, B. Ziberi, D. Flamm, A. Schindler, Thin Solid Films 459, 100 (2004)

    Article  Google Scholar 

  76. F. Frost, R. Fechner, D. Flamm, B. Ziberi, W. Frank, A. Schindler, Appl. Phys. A 78, 651 (2004)

    Article  ADS  Google Scholar 

  77. L. Aschke, M. Schweizer, J. Alkemper, A. Schindler, F. Frost, T. Hänsel, R. Fechner, U.S. Patent 7,279,252 B2 (2004)

    Google Scholar 

  78. F. Frost, H. Takino, R. Fechner, A. Schindler, N. Ohi, K. Nomura, in Towards the Synthesis of Micro-/Nano-systems, ed. by F. Kimura, K. Horio (Springer, London, 2006), p. 239

  79. F. Frost, H. Takino, R. Fechner, A. Schindler, N. Ohi, K. Nomura, Japan. J. Appl. Phys. 46, 6071 (2007)

    Article  ADS  Google Scholar 

  80. A. Cuenat, H.B. George, K.-C. Chang, J.M. Blakely, M.J. Aziz, Adv. Mater. 17, 2845 (2005)

    Article  Google Scholar 

  81. F. Frost, B. Ziberi, T. Lutz, R. Böhme, K. Zimmer, R. Fechner, B. Rauschenbach, to be published

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Frost.

Additional information

PACS

81.16.Dn; 81.16.Rf; 81.65.Cf; 81.65.Ps; 68.35.Ct

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frost, F., Ziberi, B., Schindler, A. et al. Surface engineering with ion beams: from self-organized nanostructures to ultra-smooth surfaces. Appl. Phys. A 91, 551–559 (2008). https://doi.org/10.1007/s00339-008-4516-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4516-0

Keywords

Navigation