Skip to main content
Log in

Porosity effect on the electrical conductivity of sintered powder compacts

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A new equation for calculating the electrical conductivity of sintered powder compacts is proposed. In this equation, the effective resistivity of porous compacts is a function of the fully dense material conductivity, the porosity of the compact and the tap porosity of the starting powder. The new equation is applicable to powder sintered compacts from zero porosity to tap porosity. A connection between this equation and the percolation conduction theory is stated. The proposed equation has been experimentally validated with sintered compacts of six different metallic powders. Results confirm very good agreement with theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Maxwell, A Treatise on Electricity and Magnetism (Dover, New York, 1998)

    Google Scholar 

  2. H. Fricke, J. Phys. Rev. 24, 575 (1924)

    Article  ADS  Google Scholar 

  3. A.L. Loeb, J. Am. Ceram. Soc. 37, 96 (1954)

    Google Scholar 

  4. M. Murabayashi, Y. Takahashi, T. Mukaibo, J. Nucl. Sci. Technol. 6, 657 (1969)

    Article  Google Scholar 

  5. M.I. Aivazov, I.A. Domashnev, Poroshkovaya Metallurgiya 9, 51 (1968) [in Russian]

  6. R. Meyer, Powder Metall. Int. 4, 63 (1972)

    Google Scholar 

  7. B. Schulz, High Temp. High Press. 13, 649 (1981)

  8. D.S. McLachlan, J. Phys. C Solid State Phys. 19, 1339 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  9. J.M. Montes, J.A. Rodríguez, E.J. Herrera, Powder Metallurgy 46, 251 (2003)

    Google Scholar 

  10. MPIF Standard 46, Determination of Tap Density of Metal Powders, in Standard Test Methods for Metal Powders and Powder Metallurgy Products (MPIF, Princeton, 2002)

  11. M. Slesar, E. Dudrova, E. Rudnayova, Powder Metall. Int. 24, 232 (1992)

    Google Scholar 

  12. H. Danninger, G. Jangg, B. Weiss, R. Stickler, Powder Metall. Int. 25, 170 (1993)

    Google Scholar 

  13. A. Simchi, H. Danninger, Powder Metallurgy 45, 307 (2002)

    Google Scholar 

  14. J.M. Montes, F.G. Cuevas, J. Cintas, Mater. Sci. Eng. A 395, 208 (2005)

    Article  Google Scholar 

  15. J.M. Montes, F.G. Cuevas, J. Cintas, Comp. Mater. Sci. 36, 329 (2006)

    Article  Google Scholar 

  16. J.M. Montes, F.G. Cuevas, J. Cintas, J.A. Rodríguez, E.J. Herrerra, The Equivalent Simple Cubic System, in Trends in Materials Science Research, ed. by B.M. Caruta (Nova, New York, 2005), pp. 157–190

  17. J.M. Montes, F.G. Cuevas, J. Cintas, Granular Mater. 9, 401 (2007)

    Google Scholar 

  18. A.L. Efros, Physics and Geometry of Disorder. Percolation Theory (MIR, USSR, 1985)

    Google Scholar 

  19. D. Stauffer, A. Aharony, Introduction to Percolation Theory, 2nd edn. (Taylor and Francis, London, 1994)

  20. P.G. De Gennes, J. Phys. (Paris) 37, L-1 (1976)

    Google Scholar 

  21. MPIF Standard 45, Determination of Compressibility of Metal Powders, in Standard Test Methods for Metal Powders and Powder Metallurgy Products (MPIF, Princeton, 2002)

  22. J.G. Webster (ed.), The Measurement, Instrumentation and Sensors Handbook (CRC, Springer, Berlin Heidelberg New York, 1999)

  23. E.A. Brandes (ed.), Smithells Metals Reference Book, 6th edn. (Butterworths, London, 1983)

  24. C. Argento, D. Bouvard, Int. J. Heat Mass Transf. 39, 1343 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.M. Montes.

Additional information

PACS

72.15.Eb; 72.90.+y; 81.05.Rm; 81.20.Ev

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montes, J., Cuevas, F. & Cintas, J. Porosity effect on the electrical conductivity of sintered powder compacts. Appl. Phys. A 92, 375–380 (2008). https://doi.org/10.1007/s00339-008-4534-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4534-y

Keywords

Navigation