Skip to main content
Log in

Simulation of random packing of spherical particles with different size distributions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A numerical model for a loose packing process of spherical particles is presented. The simulation model starts with randomly choosing a sphere according to a pregenerated continuous particle-size distribution, and then dropping the sphere into a dimension-specified box, and obtaining its final position by using dropping and rolling rules which are derived from a similar physical process of spheres dropping in the gravitational field to minimize its gravity potential. Effects of three different particle-size distributions on the packing structure were investigated. Analysis on the physical background of the powder-based manufacturing process is additionally applied to produce optimal packing parameters of bimodal and Gaussian distributions to improve the quality of the fabricated parts. The results showed that higher packing density can be obtained using bimodal size distribution with a particle-size ratio from 1.5 to 2.0 and the mixture composition around n 2:n 1=6:4. For particle size with a Gaussian distribution, the particle radii should be limited in a narrow range around 0.67 to 1.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.M. Visscher, M. Bolsterli, Nature 329, 504–507 (1972)

    Article  ADS  Google Scholar 

  2. P.N. Pusey, in Liquids, Freezing, and the Glass Transition, ed. by J.P. Hansen, D. Levesque, J. Zinn-Justin (Elsevier, Amsterdam, 1991)

    Google Scholar 

  3. R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1983)

    Google Scholar 

  4. P. Meakin, A.T. Skjettorp, Adv. Phys. 42, 1–127 (1993)

    Article  ADS  Google Scholar 

  5. J.D. Bernal, J. Mason, Nature 188, 910–911 (1960)

    Article  ADS  Google Scholar 

  6. L.H.S. Roblee, R.M. Baird, J.W. Tierney, AIChE J. 4, 460–464 (1958)

    Article  Google Scholar 

  7. J.-P. Kruth, in Proceedings of the 11th International Symposium for Electromachining, Lausanne, 1995, pp. 3–28

  8. M. Agarwala, D. Bourell, J. Beaman, H. Marcus, J. Barlow, Rapid Prototyp. J. 1, 26–36 (1995)

    Article  Google Scholar 

  9. S. Das, J. Beaman, M. Wohlert, D. Bourell, Rapid Prototyp. J. 4, 112–117 (1998)

    Article  Google Scholar 

  10. N.K. Tolochko, S.E. Mozzharov, I.A. Yadroitsev, T. Laoui, L. Froyen, V.I. Titov, M.B. Ignatiev, Rapid Prototyp. J. 10, 78–87 (2004)

    Article  Google Scholar 

  11. D.E. Bunnell, PhD dissertation, University of Texas at Austin, Austin, TX, 1995

  12. T. Manzur, T. Demaria, W. Chen, C. Roychoudhuri, in SPIE Photonics West Conference, San Jose, CA, 1996

  13. P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, R. Glardon, Acta Mater. 51, 1651–1662 (2003)

    Article  Google Scholar 

  14. G.D. Scott, D.M. Kilgour, J. Phys. D 2, 863 (1969)

    Article  ADS  Google Scholar 

  15. J.L. Finney, Proc. R. Soc. Lond. Ser. A 319, 479 (1970)

    ADS  Google Scholar 

  16. J. Moscinski, M. Bargie, Z.A. Rycerz, P.W.M. Jacobs, Mol. Simul. 3, 201–212 (1989)

    Article  Google Scholar 

  17. W.S. Jodrey, E.M. Tory, Powder Technol. 30, 111–118 (1981)

    Article  Google Scholar 

  18. W.S. Jodrey, E.M. Tory, Phys. Rev. A 32, 2347–2351 (1985)

    Article  ADS  Google Scholar 

  19. E.M. Tory, B.H. Church, M.K. Tam, M. Ratner, Can. J. Chem. Eng. 51, 484–493 (1973)

    Article  Google Scholar 

  20. W.S. Jodrey, E.M. Tory, Simulation 32, 1–12 (1979)

    Article  MATH  Google Scholar 

  21. K.D.L. Kristiansen, A. Wouterse, A. Philipse, Physica A 358, 249–262 (2005)

    Article  ADS  Google Scholar 

  22. M.N. Rahaman, Ceramic Processing and Sintering (Marcel Dekker, New York, 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Zhang, Y. Simulation of random packing of spherical particles with different size distributions. Appl. Phys. A 92, 621–626 (2008). https://doi.org/10.1007/s00339-008-4547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4547-6

PACS

Navigation