Skip to main content
Log in

Lithography-free high-resolution organic transistor arrays on polymer substrate by low energy selective laser ablation of inkjet-printed nanoparticle film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Inkjet direct writing of functional materials provides a promising pathway towards realization of ultra-low-cost, large-area printed electronics, albeit at the expense of lowered resolution (∼20–50 μm). We demonstrate that selective laser sintering and ablation of inkjet-printed metal nanoparticles enables low-temperature metal deposition as well as high-resolution patterning. Combined with an air-stable carboxylate-functionalized polythiophene, all-inkjet-printed and laser-processed organic field effect transistors with micron to submicron critical feature resolution were fabricated in a fully maskless sequence, eliminating the need for any lithographic processes. All processing and characterization steps were carried out at plastic-compatible low temperatures and in air under ambient pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wu, Y. Li, B.S. Ong, P. Liu, S. Gardner, B. Chiang, Adv. Mater. 17, 184 (2005)

    Article  Google Scholar 

  2. U. Zschieschang, H. Klauk, M. Halik, G. Schmid, C. Dehm, Adv. Mater. 15, 1147 (2003)

    Article  Google Scholar 

  3. Y.L. Loo, T. Someya, K.W. Baldwin, Z. Bao, P. Ho, A. Dodabalapur, H.E. Katz, J.A. Rogers, Proc. Natl. Acad. Sci. 99, 10252 (2002)

    Article  ADS  Google Scholar 

  4. J. Zaumseil, T. Someya, Z. Bao, Y.L. Loo, R. Cirelli, J.A. Rogers, Appl. Phys. Lett. 82, 793 (2003)

    Article  ADS  Google Scholar 

  5. G.B. Blanchet, Y.L. Loo, J.A. Rogers, F. Gao, C.R. Fincher, Appl. Phys. Lett. 82, 463 (2003)

    Article  ADS  Google Scholar 

  6. N. Stutzmann, R.H. Friend, H. Sirringhaus, Science 299, 1881 (2003)

    Article  ADS  Google Scholar 

  7. F. Ganier, R. Hajlaoui, A. Yasser, P. Srivastava, Science 265, 1684 (1994)

    Article  ADS  Google Scholar 

  8. Z. Bao, Y. Feng, A. Dodavalapur, V.R. Raju, A.J. Lovinger, Chem. Mater. 9, 1299 (1997)

    Article  Google Scholar 

  9. J. Chung, S. Ko, C.P. Grigoropoulos, C. Dockendorf, N.R. Bieri, D. Poulikakos, J. Heat Transfer 127, 724 (2005)

    Article  Google Scholar 

  10. J. Chung, S. Ko, N.R. Bieri, C.P. Grigoropoulos, D. Poulikakos, Appl. Phys. Lett. 84, 801 (2004)

    Article  ADS  Google Scholar 

  11. J. Chung, N.R. Bieri, S. Ko, C.P. Grigoropoulos, D. Poulikakos, Appl. Phys. A 79, 1259 (2004)

    ADS  Google Scholar 

  12. J.Z. Wang, Z.H. Zheng, H.W. Li, W.T.S. Huck, H. Sirringhaus, Nat. Mater. 3, 171 (2004)

    Article  ADS  Google Scholar 

  13. H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, Science 290, 2123 (2000)

    Article  ADS  Google Scholar 

  14. H. Sirringhaus, T. Shimoda, MRS Bull. 28, 802 (2003)

    Google Scholar 

  15. S. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Fréchet, D. Poulikakos, Appl. Phys. Lett. 90, 141103 (2007)

    Article  ADS  Google Scholar 

  16. S. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Fréchet, D. Poulikakos, Nanotechnology 18, 345202 (2007)

    Article  Google Scholar 

  17. S. Ko, J. Chung, H. Pan, C.P. Grigoropoulos, D. Poulikakos, Sens. Actuators A: Phys. 134, 161 (2007)

    Article  Google Scholar 

  18. A. Piqué, D.B. Chrisey, J.M. Fitzgerald, R.A. McGill, R.C.Y. Auyeng, H.D. Wu, S. Lakeou, V. Nguyen, R. Chung, M. Duiganan, J. Mater. Res. 15, 1872 (2000)

    Article  ADS  Google Scholar 

  19. B. Tan, K. Venkatakrishnan, K.G. Tok, Appl. Surf. Sci. 207, 365 (2003)

    Article  ADS  Google Scholar 

  20. P.A. Buffat, J.P. Borel, Phys. Rev. A 13, 2287 (1976)

    Article  ADS  Google Scholar 

  21. D. Bäuerle, Laser Processing and Chemistry (Springer, New York, 2000)

    Google Scholar 

  22. A.R. Murphy, J. Liu, C. Luscombe, D. Kavulak, J.M.J. Fréchet, R.J. Kline, M.D. McGehee, Chem. Mater. 17, 4892 (2005)

    Article  Google Scholar 

  23. M.J. Hostetler, J.E. Wingate, C.J. Zhong, H.E. Harris, R.W. Vachet, M.R. Clark, J.D. Nondono, S.J. Green, J.J. Stokes, G.D. Wignall, G.L. Glish, M.D. Porter, N.D. Evans, R.W. Murray, Langmuir 14, 17 (1998)

    Article  Google Scholar 

  24. R. Antoine, P.F. Brevet, H.H. Girault, D. Bethell, D.J. Schiffrin, Chem. Commun. 19, 1901 (1997)

    Article  Google Scholar 

  25. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  26. H. Jia, G.K. Pant, E.K. Gross, R.M. Wallace, B.E. Gnade, Org. Electron. 7, 16 (2006)

    Article  Google Scholar 

  27. S. Ko, Y. Choi, D.J. Hwang, C.P. Grigoropoulos, D. Poulikakos, Appl. Phys. Lett. 89, 141126 (2006)

    Article  ADS  Google Scholar 

  28. H. Pan, S. Ko, C.P. Grigoropoulos, Appl. Phys. A 90, 247 (2008)

    Article  ADS  Google Scholar 

  29. R.F. Pierret, Semiconductor Device Fundamentals (Addison-Wesley, New York, 1996)

    Google Scholar 

  30. L. Bürgi, T.J. Richards, R.H. Friend, H. Sirringhaus, J. Appl. Phys. 94, 6129 (2003)

    Article  ADS  Google Scholar 

  31. S. Ko, I. Park, H. Pan, C.P. Grigoropoulos, A.P. Pisano, C.K. Luscombe, J.M.J. Fréchet, Nano Lett. 7, 1869 (2007)

    Article  Google Scholar 

  32. I. Park, S. Ko, H. Pan, C.P. Grigoropoulos, A.P. Pisano, C.K. Luscombe, J.M.J. Fréchet, Adv. Mater. 20, 489 (2008)

    Article  Google Scholar 

  33. M. Halik, H. Klauk, U. Zschieschang, G. Schmid, W. Radlik, S. Ponomarenko, S. Kirchmeyer, W. Weber, J. Appl. Phys. 93, 2977 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas P. Grigoropoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, S.H., Pan, H., Grigoropoulos, C.P. et al. Lithography-free high-resolution organic transistor arrays on polymer substrate by low energy selective laser ablation of inkjet-printed nanoparticle film. Appl. Phys. A 92, 579–587 (2008). https://doi.org/10.1007/s00339-008-4597-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4597-9

PACS

Navigation