Skip to main content

Advertisement

Log in

The feasibility of producing MWCNT paper and strong MWCNT film from VACNT array

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study sought to produce carbon nanotube (CNT) pulp out of extremely long, vertically aligned CNT arrays as raw materials. After high-speed shearing and mixing nitric acid and sulfuric acid, which served as the treatment, the researchers produced the desired pulp, which was further transformed into CNT paper by a common filtration process. The paper’s tensile strength, Young’s modulus and electrical conductivity were 7.5 MPa, 785 MPa and 1.0×104 S/m, respectively, when the temperature of the acid treatment was at 110°C. Apart from this, the researchers also improved the mechanical property of CNT paper by polymers. The CNT paper was soaked in polyethylene oxide, polyvinyl pyrrolidone, and polyvinyl alcohol (PVA) solution, eventually making the CNT/PVA film show its mechanical properties, which increased, while its electrical conductivity decreased. To diffuse the polymer into the CNT paper thoroughly, the researchers used vacuum filtration to fabricate a CNT/PVA film by penetrating PVA into the CNT paper. After a ten-hour filtration, the tensile strength and Young’s modulus of CNT/PVA film were 96.1 MPa and 6.23 GPa, respectively, which show an increase by factors of 12 and 7, respectively, although the material’s electrical conductivity was lowered to 0.16×104 S/m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274, 1701 (1996)

    Article  ADS  Google Scholar 

  2. S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, Science 283, 512 (1999)

    Article  ADS  Google Scholar 

  3. F. Wei, Q. Zhang, W.Z. Qian, G.H. Xu, R. Xiang, Q. Wen, Y. Wang, G.H. Luo, New Carbon Mater. 22, 271 (2007)

    ADS  Google Scholar 

  4. K.L. Jiang, Q.Q. Li, S.S. Fan, Nature 419, 801 (2002)

    Article  ADS  Google Scholar 

  5. R.H. Baughman, C.X. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Science 284, 1340 (1999)

    Article  ADS  Google Scholar 

  6. M. Endo, H. Muramatsu, T. Hayashi, Y.A. Kim, M. Terrones, N.S. Dresselhaus, Nature 433, 476 (2005)

    Article  ADS  Google Scholar 

  7. P.G. Whitten, G.M. Spinks, G.G. Wallace, Carbon 43, 1891 (2005)

    Article  Google Scholar 

  8. M.A. Poggi, P.T. Lillehei, L.A. Bottomley, Chem. Mater. 17, 4289 (2005)

    Article  Google Scholar 

  9. Y.A. Kim, H. Muramatsu, T. Hayashi, M. Endo, M. Terrones, M.S. Dresselhaus, Chem. Vapor Depos. 12, 327 (2006)

    Article  Google Scholar 

  10. A. Kukovecz, R. Smajda, Z. Konya, I. Kiricsi, Carbon 45, 1696 (2007)

    Article  Google Scholar 

  11. F. Zheng, D.L. Baldwin, L.S. Fifield, N.C. Anheier, C.L. Aardahl, J.W. Grate, Anal. Chem. 78, 2442 (2006)

    Article  Google Scholar 

  12. I.P. Kang, M.J. Schulz, J.H. Kim, V. Shanov, D.L. Shi, Smart Mater. Struct. 15, 737 (2006)

    Article  ADS  Google Scholar 

  13. Y.A. Kim, H. Muramatsu, M. Kojima, T. Hayashi, Y. Kaburagi, M. Endo, J. Nanosci. Nanotechnol. 6, 3321 (2006)

    Article  Google Scholar 

  14. R. Smajda, A. Kukovecz, Z. Konya, I. Kiricsi, Carbon 45, 1176 (2007)

    Article  Google Scholar 

  15. K.T. Jeng, C.C. Chien, N.Y. Hsu, W.M. Huang, S.D. Chiou, S.H. Lin, J. Power Sources 164, 33 (2007)

    Article  Google Scholar 

  16. J.L. Bahr, J. Yang, D.V. Kosynkin, M.J. Bronikowski, R.E. Smalley, J.M. Tour, J. Am. Chem. Soc. 123, 6536 (2001)

    Article  Google Scholar 

  17. X.F. Zhang, T.V. Sreekumar, T. Liu, S. Kumar, J. Phys. Chem. B 108, 16435 (2004)

    Article  Google Scholar 

  18. J.Q. Wei, H.W. Zhu, Y.H. Li, B. Chen, Y. Jia, K.L. Wang, Z.C. Wang, W.J. Liu, J.B. Luo, M.X. Zheng, D.H. Wu, Y.Q. Zhu, B.Q. Wei, Adv. Mater. 18, 1695 (2006)

    Article  Google Scholar 

  19. T. Gong, Y. Zhang, W.J. Liu, J.Q. Wei, C.G. Li, K.L. Wang, D.H. Wu, M.L. Zhong, Carbon 45, 2235 (2007)

    Article  Google Scholar 

  20. Y. Jia, J.Q. Wei, Q.K. Shu, J.G. Chang, K.L. Wang, Z.C. Wang, J.B. Luo, W.J. Liu, M.X. Zheng, D.H. Wu, Chin. Sci. Bull. 52, 997 (2007)

    Article  Google Scholar 

  21. U. Vohrer, I. Kolaric, M.H. Haque, S. Roth, U. Detlaff-Weglikowska, Carbon 42, 1159 (2004)

    Article  Google Scholar 

  22. S.M. Cooper, H.F. Chuang, M. Cinke, B.A. Cruden, M. Meyyappan, Nano Lett. 3, 189 (2003)

    Article  Google Scholar 

  23. Z.F. Li, G.H. Luo, F. Wei, Y. Huang, Compos. Sci. Technol. 66, 1022 (2006)

    Article  Google Scholar 

  24. V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Proc. Natl. Acad. Sci 104, 13574 (2007)

    Article  ADS  Google Scholar 

  25. Y. Wang, F. Wei, G.H. Luo, H. Yu, G.S. Gu, Chem. Phys. Lett. 364, 568 (2002)

    Article  ADS  Google Scholar 

  26. Y. Wang, J. Wu, F. Wei, Carbon 41, 2939 (2003)

    Article  Google Scholar 

  27. Q. Zhang, W.P. Zhou, W.Z. Qian, R. Xiang, J.Q. Huang, D.Z. Wang, F. Wei, J. Phys. Chem. C 111, 14638 (2007)

    Article  Google Scholar 

  28. R. Xiang, G. Luo, W. Qian, Y. Wang, F. Wei, Q. Li, Chem. Vapor Depos. 13, 533 (2007)

    Article  Google Scholar 

  29. Q. Zhang, J.Q. Huang, F. Wei, G.H. Xu, Y. Wang, W.Z. Qian, D.Z. Wang, Chin. Sci. Bull. 52, 2896 (2007)

    Article  Google Scholar 

  30. D. Wang, P. Song, C. Liu, W. Wu, S.S. Fan, Nanotechnology 19, 075609 (2008)

    Article  ADS  Google Scholar 

  31. W.P. Zhou, Y.L. Wu, F. Wei, G.H. Luo, W.Z. Qian, Polymer 46, 12689 (2005)

    Article  Google Scholar 

  32. W.Z. Qian, T. Liu, F. Wei, H.Y. Yuan, Carbon 41, 1851 (2003)

    Article  Google Scholar 

  33. H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, R.H. Friend, J. Phys. Chem. B 103, 8116 (1999)

    Article  Google Scholar 

  34. P.X. Hou, S. Bai, Q.H. Yang, C. Liu, H.M. Cheng, Carbon 40, 81 (2002)

    Article  Google Scholar 

  35. S. Picozzi, S. Santucci, L. Lozzi, C. Cantalini, C. Baratto, G. Sberveglieri, I. Armentano, J.M. Kenny, L. Valentini, B. Delley, J. Vac. Sci. Technol. A 22, 1466 (2004)

    Article  ADS  Google Scholar 

  36. C. Lau, R. Cervini, S. Clarke, M. Markovic, J. Matisons, S. Hawkins, C. Huynh, G. Simon, J. Nanopart. Res. (2008). DOI:10.1007/s11051-008-9376-1

    Google Scholar 

  37. J.E. Fischer, H. Dai, A. Thess, R. Lee, N.M. Hanjani, D.L. Dehaas, R.E. Smalley, Phys. Rev. B 55, R4921 (1997)

    Article  ADS  Google Scholar 

  38. G.T. Kim, E.S. Choi, D.C. Kim, D.S. Suh, Y.W. Park, K. Liu, G. Duesberg, S. Roth, Phys. Rev. B 58, 16064 (1998)

    Article  ADS  Google Scholar 

  39. A.D. Bozhko, D.E. Sklovsky, V.A. Nalimova, A.G. Rinzler, R.E. Smalley, J.E. Fischer, Appl. Phys. A 67, 75 (1998)

    Article  ADS  Google Scholar 

  40. T.V. Sreekumar, T. Liu, S. Kumar, L.M. Ericson, R.H. Hauge, R.E. Smalley, Chem. Mater. 15, 175 (2003)

    Article  Google Scholar 

  41. L. Berhan, Y.B. Yi, A.M. Sastry, E. Munoz, M. Selvidge, R. Baughman, J. Appl. Phys. 95, 4335 (2004)

    Article  ADS  Google Scholar 

  42. V. Skakalova, A.B. Kaiser, U. Dettlaff-Weglikowska, K. Hrncarikova, S. Roth, J. Phys. Chem. B 109, 7174 (2005)

    Article  Google Scholar 

  43. U. Dettlaff-Weglikowska, V. Skakalova, R. Graupner, S.H. Jhang, B.H. Kim, H.J. Lee, L. Ley, Y.W. Park, S. Berber, D. Tomanek, S. Roth, J. Am. Chem. Soc. 127, 5125 (2005)

    Article  Google Scholar 

  44. P.G. Whitten, A.A. Gestos, G.M. Spinks, K.J. Gilmore, G.G. Wallace, J. Biomed. Mater. Res. B Appl. Biomater. 82, 37 (2007)

    Google Scholar 

  45. L.C. Teague, S. Banerjee, S.S. Wong, C.A. Richter, B. Varughese, J.D. Batteas, Chem. Phys. Lett. 442, 354 (2007)

    Article  ADS  Google Scholar 

  46. J.N. Coleman, W.J. Blau, A.B. Dalton, E. Munoz, S. Collins, B.G. Kim, J. Razal, M. Selvidge, G. Vieiro, R.H. Baughman, Appl. Phys. Lett. 82, 1682 (2003)

    Article  ADS  Google Scholar 

  47. Z. Wang, Z.Y. Liang, B. Wang, C. Zhang, L. Kramer, Compos. Part A 35, 1225 (2004)

    Article  Google Scholar 

  48. S.R. Wang, Z.Y. Liang, G. Pham, Y.B. Park, B. Wang, C. Zhang, L. Kramer, P. Funchess, Nanotechnology 18, 095708 (2007)

    Article  ADS  Google Scholar 

  49. J.H. Gou, Polym. Int. 55, 1283 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, G., Zhang, Q., Zhou, W. et al. The feasibility of producing MWCNT paper and strong MWCNT film from VACNT array. Appl. Phys. A 92, 531–539 (2008). https://doi.org/10.1007/s00339-008-4606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4606-z

PACS

Navigation