Skip to main content
Log in

Tailoring the wetting response of silicon surfaces via fs laser structuring

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Control over the wettability of solids and manufacturing of functional surfaces with special hydrophobic and self-cleaning properties has aroused great interest because of its significance for a vast range of applications in daily life, industry and agriculture. We report here a simple method for preparing stable superhydrophobic surfaces by irradiating silicon (Si) wafers with femtosecond (fs) laser pulses and subsequently coating them with chloroalkylsilane monolayers. It is possible, by varying the laser pulse fluence on the surface, to achieve control of the wetting properties through a systematic and reproducible variation of roughness at micro- and nano-scale which mimics both the topology of the “model” superhydrophobic surface—the natural lotus leaf—, as well as its wetting response. Water droplets can move along these irradiated superhydrophobic surfaces, under the action of small gravitational forces, and experience subsequent immobilization, induced by surface tension gradients. These results demonstrate the potential of manipulating liquid motion through selective laser patterning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Blossey, Nat. Mater. 2, 301 (2003)

    Article  ADS  Google Scholar 

  2. M. Callies, D. Quere, Soft Matter 1, 55 (2005)

    Article  ADS  Google Scholar 

  3. A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Adv. Mater. 11, 1365 (1999)

    Article  Google Scholar 

  4. T. Sun, L. Feng, X. Gao, L. Jiang, Acc. Chem. Res. 38, 644 (2005)

    Article  Google Scholar 

  5. T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda, Langmuir 15, 4321 (1999)

    Article  Google Scholar 

  6. W. Lee, M.K. Jin, W.C. Yoo, J.K. Lee, Langmuir 20, 7665 (2004)

    Article  Google Scholar 

  7. G.S. Watson, J.A. Watson, Appl. Surf. Sci. 235, 139 (2004)

    Article  ADS  Google Scholar 

  8. W. Barthlott, C. Neinhuis, Planta 202, 1 (1997)

    Article  Google Scholar 

  9. Z. Gao, J. Lei, Nature 432, 36 (2004)

    Article  ADS  Google Scholar 

  10. J.-Y. Shiu, C.-W. Kuo, P. Chen, C.-Y. Mou, Chem. Mater. 16, 561 (2004)

    Article  Google Scholar 

  11. P.N. Bartlett, J.J. Baumberg, P.R. Birkin, M.A. Ghanem, M.C. Netti, Chem. Mater. 14, 2199 (2002)

    Article  Google Scholar 

  12. I. Woodward, W.C.E. Schofield, V. Roucoules, J.P.S. Badyal, Langmuir 19, 3432 (2003)

    Article  Google Scholar 

  13. E. Martines, K. Seunarine, H. Morgan, N. Gadegaard, C.D.W. Wilkinson, M.O. Riehle, Nano Lett. 5, 2097 (2005)

    Article  ADS  Google Scholar 

  14. E. Martines, Nano Lett. 2005, 5, 2097

  15. K.K.S. Lau, J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H. McKinley, K.K. Gleason, Nano Lett. 3, 1701 (2003)

    Article  ADS  Google Scholar 

  16. V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D.G. Papazoglou, I. Zergioti, Appl. Phys. Lett. 88, 081103 (2006)

    Article  ADS  Google Scholar 

  17. T.-H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Appl. Phys. Lett. 73, 1673 (1998)

    Article  ADS  Google Scholar 

  18. V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, C. Fotakis, Nanotechnology 17, 3234 (2006)

    Article  ADS  Google Scholar 

  19. D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 2000)

    Book  Google Scholar 

  20. N.S. Murthy, R.D. Prabhu, J.J. Martin, L. Zhou, R.L. Headrick, J. Appl. Phys. 100, 023528 (2006)

    Article  ADS  Google Scholar 

  21. S.I. Dolgaev, S.V. Lavrishev, A.A. Lyalin, A.V. Simakin, V.V. Voronov, G.A. Shafeev, Appl. Phys. A 73, 177 (2001)

    Article  ADS  Google Scholar 

  22. W.R. Ashurst, C. Carraro, R. Maboudian, IEEE Trans. Dev. Mater. Reliab. 3, 173 (2003)

    Article  Google Scholar 

  23. D. Oner, T.J. McCarthy, Langmuir 16, 7777 (2000)

    Article  Google Scholar 

  24. S.R. Wasserman, Y.-T. Tao, G.M. Whitesides, Langmuir 5, 1074 (1989)

    Article  Google Scholar 

  25. A.M. Cazabat, F. Heslot, S.M. Troian, P. Carles, Nature 346, 842 (1990)

    Article  Google Scholar 

  26. M.K. Chaudhury, M. Whitesides, Science 256, 1539 (1992)

    Article  ADS  Google Scholar 

  27. B.S. Gallardo, V.K. Gupta, F.D. Eagerton, L.I. Jong, V.S. Craig, R.R. Shah, N.L. Abbott, Science 283, 57 (1999)

    Article  ADS  Google Scholar 

  28. K. Ichimura, S.K. Oh, M. Nakagawa, Science 288, 1624 (2000)

    Article  ADS  Google Scholar 

  29. R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936)

    Article  Google Scholar 

  30. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)

    Article  Google Scholar 

  31. A. Lafuma, D. Quere, Nat. Mater. 2, 457 (2003)

    Article  ADS  Google Scholar 

  32. D. Quere, A. Lafuma, J. Bico, Nanotechnology 14, 1109 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fotakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zorba, V., Stratakis, E., Barberoglou, M. et al. Tailoring the wetting response of silicon surfaces via fs laser structuring. Appl. Phys. A 93, 819–825 (2008). https://doi.org/10.1007/s00339-008-4757-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4757-y

PACS

Navigation