Skip to main content
Log in

Subthreshold regime in rubrene single-crystal organic transistors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Organic field-effect transistors were fabricated with vapor-grown rubrene single crystals in a staggered top-contact configuration. The devices were electrically characterized by measuring the transfer curves at low drain voltage. In parallel to these measurements, a model is developed to account for the subthreshold regime of the transistors. The model is based on the multiple trapping and thermal release concept, which assumes that charge transport is limited by a single level of shallow traps located close to the transport band edge. It is shown that the threshold voltage no longer establishes at the transition between the depletion and accumulation regimes. Instead, the threshold corresponds to the point at which traps are filled. This results in a subthreshold current that varies linearly with gate voltage. Moreover, the subthreshold current at low drain voltages increases with drain voltage. These finding are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  2. E. Meijer, C. Detcheverry, P. Baesjou, E. Van Veenendaal, D. de Leeuw, T. Klapwijk, J. Appl. Phys. 93(8), 4831 (2003)

    Article  ADS  Google Scholar 

  3. S. Scheinert, G. Paasch, M. Schrödner, H.K. Roth, S. Sensfuss, T. Doll, J. Appl. Phys. 92(1), 330 (2002)

    Article  ADS  Google Scholar 

  4. E. Calvetti, A. Savio, Z.M. Kovacs-Vajna, L. Colalongo, Appl. Phys. Lett. 87, 223506 (2005)

    Article  ADS  Google Scholar 

  5. G. Horowitz, R. Hajlaoui, H. Bouchriha, R. Bourguiga, M. Hajlaoui, Adv. Mater. 10, 923 (1998)

    Article  Google Scholar 

  6. A.L. Briseno, R.J. Tseng, M.M. Ling, E.H.L. Talcao, Y. Yang, F. Wudl, Z.N. Bao, Adv. Mater. 18, 2320 (2006)

    Article  Google Scholar 

  7. M. Shur, Physics of Semiconductor Devices (Prentice Hall, Englewood Cliffs, 1990)

    Google Scholar 

  8. N. Karl, J. Marktanner, R. Stehle, W. Warta, Synth. Metal. 42, 2473 (1991)

    Article  Google Scholar 

  9. R.W.I. de Boer, M.E. Gershenson, A.F. Morpurgo, V. Podzorov, Phys. Stat. Sol. (a) 201, 1302 (2004)

    Article  ADS  Google Scholar 

  10. J.P. Colinge, C.A. Colinge, Physics of Semiconductor Devices (Kluwer, Dordrecht, 2002)

    Google Scholar 

  11. P.G. Le Comber, W.E. Spear, Phys. Rev. Lett. 25, 509 (1970)

    Article  ADS  Google Scholar 

  12. G. Horowitz, P. Delannoy, J. Appl. Phys. 70(1), 469 (1991)

    Article  ADS  Google Scholar 

  13. D. Braga, N. Battaglini, A. Yassar, G. Horowitz, M. Campione, A. Sassella, A. Borghesi, Phys. Rev. B 77, 115205 (2008)

    Article  ADS  Google Scholar 

  14. A. Ortiz-Conde, F.J. Garcia Sanchez, J.J. Liou, A. Cerdeira, M. Estrada, Y. Yue, Microelectron. Reliab. 42, 583 (2002)

    Article  Google Scholar 

  15. L. Dobrescu, M. Petrov, D. Dobrescu, C. Ravariu, in 23rd International Semiconductor Conference CAS 2000, pp. 371–374

  16. H.S. Wong, M.H. White, T.J. Krutsick, R.V. Booth, Solid-State Electron. 30, 953 (1987)

    Article  ADS  Google Scholar 

  17. J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, S. Ogawa, Appl. Phys. Lett. 90, 102120 (2007)

    Article  ADS  Google Scholar 

  18. C.B. Walsh, E.I. Franses, Thin Solid Films 429, 71 (2003)

    Article  ADS  Google Scholar 

  19. W.Y. Choi, D.S. Woo, B.Y. Choi, J.D. Lee, B.G. Park, Jpn. J. Appl. Phys. 43, 1759 (2004)

    Article  ADS  Google Scholar 

  20. W.Y. Choi, H. Kim, B. Lee, J.D. Lee, B.G. Park, IEEE Trans. Electron Devices 51, 1833 (2004)

    Article  ADS  Google Scholar 

  21. M. Mottaghi, G. Horowitz, Org. Electron. 7, 528 (2006)

    Article  Google Scholar 

  22. K. Ryu, I. Kymissis, V. Bulovic, C.G. Sodini, IEEE Electron Device Lett. 26, 716 (2005)

    Article  ADS  Google Scholar 

  23. D. Natali, L. Fumagalli, M. Sampietro, J. Appl. Phys. 101, 014501 (2007)

    Article  ADS  Google Scholar 

  24. S. Scheinert, G. Paasch, T. Dool, Synth. Metal. 139, 233 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Horowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braga, D., Horowitz, G. Subthreshold regime in rubrene single-crystal organic transistors. Appl. Phys. A 95, 193–201 (2009). https://doi.org/10.1007/s00339-008-5008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-5008-y

PACS

Navigation