Skip to main content
Log in

Electric-field dependence of dielectric properties of sol-gel derived Ba(Zr0.2Ti0.8)O3 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of a dc bias field on the diffuse phase transition and nonlinear dielectric properties of sol-gel derived Ba(Zr0.2Ti0.8)O3 (BZT) ceramics are investigated. Diffuse phase transitions were observed in BZT ceramics and the Curie–Weiss exponent (CWE) was γ∼2.0. The dielectric constant versus temperature characteristics and the γ in the modified Curie–Weiss law, ε −1=ε −1 m [1+(TT m )γ/C1](1≤γ≤2), as a function of the dc bias field was obtained for BZT ceramics. The results indicated that γ is a function of dc bias field, and the γ value decreased from 2.04 to 1.73 with dc bias field increasing from 0 to 20 kV/cm. The dielectric constant decreases with increasing dc bias field, indicating a field-induced phase transition. The dc bias field has a strong effect on the position of the dielectric peak and affects the magnitude of the dielectric properties over a rather wide temperature range. The peak temperature of the dielectric loss does not coincide with the dielectric peak and an obvious minimum value for the dielectric loss at the temperature of the dielectric peaks is observed. At room temperature, 300 K, the high tunability (K=80%), the low loss tangent (≈0.01) and the large FOM (74), clearly imply that these ceramics are promising materials for tunable capacitor-device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hennings, A. Schnell, G. Simon, J. Am. Ceram. Soc. 65, 539 (1982)

    Article  Google Scholar 

  2. S. Hoffmann, R.W. Waser, Integr. Ferroelectr. 17, 141 (1997)

    Article  Google Scholar 

  3. P.W. Rehrig, S.E. Park, S. Trolier-MsKinstry, G.L. Messing, B. Jones, T.R. Shrout, J. Appl. Phys. 86, 1657 (1999)

    Article  ADS  Google Scholar 

  4. Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 88, 410 (2000)

    Article  ADS  Google Scholar 

  5. Y. Zhi, A. Chen, R. Guo, A.S. Bhalla, J. Appl. Phys. 92, 2655 (2002)

    Article  ADS  Google Scholar 

  6. Y. Zhi, A. Chen, R. Guo, A.S. Bhalla, Mater. Lett. 61, 326 (2007)

    Article  Google Scholar 

  7. U. Weber, G. Greuel, U. Boettger, S. Weber, D. Hennings, R. Waser, J. Am. Ceram. Soc. 84, 759 (2001)

    Article  Google Scholar 

  8. S.M. Mukhopadhayay, T.C.S. Chen, J. Mater. Res. 10, 1502 (1995)

    Article  ADS  Google Scholar 

  9. S. Hoffmann, R. Waser, J. Eur. Ceram. Soc. 19, 1339 (1999)

    Article  Google Scholar 

  10. X.G. Tang, K.H. Chew, H.L.W. Chan, Acta Mater. 52, 5177 (2004)

    Article  Google Scholar 

  11. S. Halder, T. Schneller, U. Böttger, R. Waser, Appl. Phys. A 81, 25 (2005)

    Article  ADS  Google Scholar 

  12. A.A. Bokov, M. Maglione, Z.G. Ye, J. Phys., Condens. Matter 19, 092001 (2007)

    Article  ADS  Google Scholar 

  13. N. Sawangwan, J. Barrel, K. MacKenzie, T. Tunkasiri, Appl. Phys. A 90, 723 (2008)

    Article  ADS  Google Scholar 

  14. W.S. Choi, B.S. Jang, D.G. Lim, J. Yi, B. Hong, J. Cryst. Growth 237–239, 438 (2002)

    Article  Google Scholar 

  15. A. Dixit, S.B. Majumder, R.S. Katiyar, A.S. Bhalla, Appl. Phys. Lett. 82, 2679 (2003)

    Article  ADS  Google Scholar 

  16. X.G. Tang, H.L.W. Chan, A.L. Ding, Thin Solid Films 460, 227 (2004)

    Article  ADS  Google Scholar 

  17. S. Halder, T. Schneller, U. Böttger, R. Waser, Appl. Phys. A 81, 25 (2005)

    Article  ADS  Google Scholar 

  18. X.G. Tang, X.X. Wang, K.H. Wong, H.L.W. Chan, Appl. Phys. A 81, 1253 (2005)

    Article  ADS  Google Scholar 

  19. S.K. Rout, T. Badapanda, E. Sinha, S. Panigrahi, P.K. Barhai, T.P. Sinha, Appl. Phys. A 91, 101 (2008)

    Article  ADS  Google Scholar 

  20. W.J. Merz, Phys. Rev. 91, 513 (1953)

    Article  ADS  Google Scholar 

  21. K. Uchino, S. Nomura, Ferroelectr. Lett. Sect. 44, 55 (1982)

    Article  Google Scholar 

  22. D. Viehland, M. Wuttig, L.E. Cross, Ferroelectrics 120, 71 (1991)

    Google Scholar 

  23. B.E. Vugmeister, M.D. Glinichuk, Rev. Mod. Phys. 62, 993 (1990)

    Article  ADS  Google Scholar 

  24. K.M. Johnson, J. Appl. Phys. 33, 2826 (1962)

    Article  ADS  Google Scholar 

  25. M.E. Lines, A.M. Glass, Principle and Application of Ferroelectrics and Related Materials (Oxford University Press, New York, 1977)

    Google Scholar 

  26. K.L. Bye, P.W. Whips, E.T. Keve, Ferroelectrics 4, 253 (1972)

    Google Scholar 

  27. X.X. Xi, H.C. Li, W. Si, A.A. Sirenko, I.A. Akimov, J.R. Fox, A.M. Clark, J. Hao, J. Electroceram. 4, 393 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. G. Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, X.G., Liu, Q.X., Wang, J. et al. Electric-field dependence of dielectric properties of sol-gel derived Ba(Zr0.2Ti0.8)O3 ceramics. Appl. Phys. A 96, 945–952 (2009). https://doi.org/10.1007/s00339-009-5103-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5103-8

PACS

Navigation