Skip to main content
Log in

Determination of band gaps of self-assembled carbon nanotube films using Tauc/Davis–Mott model

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The band gaps of self-assembled single-walled carbon nanotube (SWNT) films have been determined through curve fitting using the semi-empirical Tauc and Davis–Mott model, based on the measurement of optical absorption at the visible and near infrared range. This study provides a practicable option for the determination of band gaps for ultra-thin SWNT films or multi-walled carbon nanotube films whose vHs peaks cannot be well resolved in absorption spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Stewart, F. Leonard, Nano Lett. 5, 219 (2005)

    Article  ADS  Google Scholar 

  2. P. Avouris, M. Freitag, V. Perebeinos, Nat. Photonics 2, 341 (2008)

    Article  ADS  Google Scholar 

  3. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 103, 2555 (1999)

    Article  Google Scholar 

  4. J.W. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature 391, 59 (1998)

    Article  ADS  Google Scholar 

  5. T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Nature 391, 62 (1998)

    Article  ADS  Google Scholar 

  6. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes Carbon Nanotubes (Academic Prees, San Diego, 1996)

    Google Scholar 

  7. H.W. Zhu, G.L. Zhao, C. Masarapu, D.P. Young, B.Q. Wei, Appl. Phys. Lett. 86, 203107 (2005)

    Article  ADS  Google Scholar 

  8. Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Science 305, 1273 (2004)

    Article  ADS  Google Scholar 

  9. M. Endo, H. Muramatsu, T. Hayashi, Y.A. Kim, M. Terrones, M.S. Dresselhaus, Nature 433, 476 (2005)

    Article  ADS  Google Scholar 

  10. R. Duggal, F. Hussain, M. Pasquali, Adv. Mater. 18, 29 (2006)

    Article  Google Scholar 

  11. W.J. Ma, L. Song, R. Yang, T.H. Zhang, Y.C. Zhao, L.F. Sun, Y. Ren, D.F. Liu, L.F. Liu, J. Shen, Z.X. Zhang, Y.J. Xiang, W.Y. Zhou, S.S. Xie, Nano Lett. 7, 2307 (2007)

    Article  ADS  Google Scholar 

  12. H.W. Zhu, B.Q. Wei, Chem. Commun. 29, 3042 (2007)

    Article  Google Scholar 

  13. G. Gruner, J. Mater. Chem. 16, 3533 (2006)

    Article  Google Scholar 

  14. M.B. Tzolov, T.F. Kuo, D.A. Straus, A.J. Yin, J. Xu, J. Phys. Chem. C 111, 5800 (2007)

    Article  Google Scholar 

  15. J.Q. Wei, Y. Jia, Q.K. Shu, Z.Y. Gu, K.L. Wang, D.M. Zhuang, G. Zhang, Z.C. Wang, J.B. Luo, A.Y. Cao, D.H. Wu, Nano Lett. 7, 2317 (2007)

    Article  ADS  Google Scholar 

  16. A. Behnam, J.L. Johnson, Y. Choi, M.G. Ertosun, A.K. Okyay, P. Kapur, K.C. Saraswat, A. Ural, Appl. Phys. Lett. 92, 243116 (2008)

    Article  ADS  Google Scholar 

  17. Y. Jia, J.Q. Wei, K.L. Wang, A.Y. Cao, Q.K. Shu, X.C. Gu, Y.Q. Zhu, D.M. Zhuang, G. Zhang, B.B. Ma, L.D. Wang, W.J. Liu, Z.C. Wang, J.B. Luo, D.H. Wu, Adv. Mater. 20, 4594 (2008)

    Article  Google Scholar 

  18. F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz, Science 308, 838 (2005)

    Article  ADS  Google Scholar 

  19. I.W. Chiang, B.E. Brinson, R.E. Smalley, J.L. Margrave, R.H. Hauge, J. Phys. Chem. B 105, 1157 (2001)

    Article  Google Scholar 

  20. X. Liu, T. Pichler, M. Knupfer, M.S. Golden, J. Fink, H. Kataura, Y. Achiba, Phys. Rev. B 66, 45411 (2002)

    Article  ADS  Google Scholar 

  21. H.W. Zhu, H.F. Zeng, V. Subramanian, C. Masarapu, K.H. Hung, B.Q. Wei, Nanotechnology 19, 465204 (2008)

    Article  ADS  Google Scholar 

  22. P.S. Kireev, Semiconductor Physics, 2nd edn. (Mir, Moscow, 1978)

    Google Scholar 

  23. J. Tauc, Optical Properties of Solids (Plenum, New York, 1969)

    Google Scholar 

  24. E.A. Davis, N.F. Mott, Philos. Mag. 22, 903 (1970)

    Article  ADS  Google Scholar 

  25. N.F. Mott, E.A. Davis, Electronic Processes in Noncrystalline Materials (Clarendon, Oxford, 1979)

    Google Scholar 

  26. S. Adhikary, X.M. Tian, S. Adhikari, A.M.M. Omer, H. Uchida, M. Umeno, Diam. Relat. Mater. 14, 1832 (2005)

    Article  Google Scholar 

  27. S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, S.J. Chua, J. Phys. Appl. 98, 013505 (2005)

    Article  Google Scholar 

  28. P. Tyagi, A.G. Vedeshwar, Bull. Mater. Sci. 24, 297 (2001)

    Article  Google Scholar 

  29. X. Sun, S. Zaric, D. Daranciang, K. Welsher, Y. Lu, X. Li, H. Dai, J. Am. Chem. Soc. 130, 6551 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Zhu, H., Wei, J. et al. Determination of band gaps of self-assembled carbon nanotube films using Tauc/Davis–Mott model. Appl. Phys. A 97, 341–344 (2009). https://doi.org/10.1007/s00339-009-5330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5330-z

PACS

Navigation