Skip to main content
Log in

Phase transition of TiO2 thin films detected by the pulsed laser photoacoustic technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we present characterization of titanium oxide thin films by photoacoustic measurements to determine the ablation threshold and phase transitions from amorphous to crystalline states. The important advantages of this method are that it does not require amplification at the detection stage and that it is a non-destructive technique. The correlation analysis of the photoacoustic signals allows us to visualize the ablation threshold and the phase transitions with enhanced sensitivity. This correlation analysis clearly exhibits the changes in the thin-film morphology due to controlled variations of the fluence (energy/area) and the temperature of the surrounding medium. This is particularly important for those cases where the crystalline changes caused by temperature variations need to be monitored. The thin-film samples were prepared by the sputtering technique at room temperature in the amorphous state. The phase transformations were induced by controlled temperature scanning and then corroborated with Raman spectroscopy measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, J. Phys. D, Appl. Phys. 33, 912 (2000)

    Article  ADS  Google Scholar 

  2. C.-C. Ting, S.-Y. Chen, D.-M. Liu, J. Appl. Phys. 88, 4628 (2000)

    Article  ADS  Google Scholar 

  3. M.A.C. López, L.E. Alarcón, E.H. Poniatowski, Appl. Phys. A 78, 59 (2004)

    Article  ADS  Google Scholar 

  4. E. Haro, Z.S. Xu, J.-F. Morhange, M. Balkanski, Phys. Rev. B 32, 969 (1985)

    Article  ADS  Google Scholar 

  5. P. Arun, A.G. Vedeshwar, N.C. Mehra, J. Phys. D, Appl. Phys. 32, 183 (1999)

    Article  ADS  Google Scholar 

  6. L.K. Malhotra, Y. Sripathi, G.B. Reddy, Bull. Mater. Sci. 18, 725 (1995)

    Article  Google Scholar 

  7. Y. Zhang, X. Ma, P. Chen, D. Yang, J. Cryst. Growth 300, 551 (2007)

    Article  ADS  Google Scholar 

  8. W. Li, C. Ni, H. Lin, C.P. Huang, S.I. Shah, J. Appl. Phys. 96, 6663 (2004)

    Article  ADS  Google Scholar 

  9. A.S. Barnard, P. Zapol, L.A. Curtiss, J. Chem. Theory Comput. 1, 107 (2005)

    Article  Google Scholar 

  10. R.C. Guzmán, M.V. Muniz, J.M.S. Blesa, O.P. Martínez, Appl. Phys. Lett. 73, 623 (1998)

    Article  ADS  Google Scholar 

  11. E.V.M. Uriarte, R.C. Guzmán, M.V. Muniz, E. Camarillo, J.A. Hernández, H. Murrieta, M. Navarrete, J. Phys., Condens. Matter 15, 6889 (2003)

    Article  ADS  Google Scholar 

  12. M.C. Marchi, R.C. Guzmán, A.P. Pacheco, S.A. Bilmes, M.V. Muniz, Int. J. Thermophys. 25, 491 (2004)

    Article  ADS  Google Scholar 

  13. A.G. Bell, J. Sci. 20, 305 (1880)

    Google Scholar 

  14. V.S. Chivukula, M.S. Shur, D. Ciplys, Phys. Status Solidi (a) 204, 3209 (2007)

    Article  ADS  Google Scholar 

  15. R.C. Guzman, S.J.P. Ruiz, M.V. Muniz, J.M.S. Blesa, Anal. Sci. 17, 122 (2001)

    Google Scholar 

  16. A.P. Pacheco, C. Prieto, R.C. Guzmán, J.G. López, Thin Solid Films 517, 5415 (2009)

    Article  ADS  Google Scholar 

  17. A.C. Tam, Rev. Mod. Phys. 58, 381 (1986)

    Article  ADS  Google Scholar 

  18. J. Yang, H. Bai, X. Tan, J. Lian, Appl. Surf. Sci. 253, 1988 (2006)

    Article  ADS  Google Scholar 

  19. F.J. Ager, I. Justicia, R. Gerbasi, G.A. Battiston, N. McSporran, A. Figueras, Nucl. Instrum. Methods Phys. Res. B 249, 490 (2006)

    Article  ADS  Google Scholar 

  20. L.R.F. Rose, J. Acoust. Soc. Am. 75, 723 (1984)

    Article  MATH  ADS  Google Scholar 

  21. I. Apostol, R. Stoian, R. Dabu, A. Stratan, Appl. Surf. Sci. 136, 166 (1998)

    Article  ADS  Google Scholar 

  22. V.V. Yakovlev, G. Scarel, C.R. Aita, S. Mochizuki, Appl. Phys. Lett. 76, 1107 (2000)

    Article  ADS  Google Scholar 

  23. N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, Thin Solid Films 300, 113 (1997)

    Article  ADS  Google Scholar 

  24. J. Ragai, W. Lotfi, Colloids Surf. 61, 97 (1991)

    Article  Google Scholar 

  25. R. Wang, K. Haschimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Adv. Mater. 10, 135 (1998)

    Article  Google Scholar 

  26. A. Kolouch, M. Horáková, P. Hájková, E. Heyduková, P. Exnar, P. Spatenka, Probl. At. Sci. Techn., Ser. Plasma Phys. 12, 1998 (2006)

    Google Scholar 

  27. N. Sakai, R. Wang, A. Fujishima, T. Watanabe, K. Hashimoto, Langmuir 14, 5918 (1998)

    Article  Google Scholar 

  28. M.A. Henderson, Surf. Sci. 355, 151 (1996)

    Article  ADS  Google Scholar 

  29. T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto, Thin Solid Films 351, 260 (1999)

    Article  ADS  Google Scholar 

  30. M. Janczarek, J. Hupka, H. Kisch, Physicochem. Probl. Mineral. Process. 40, 287 (2006)

    Google Scholar 

  31. R. Wang, N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, J. Phys. Chem. B 103, 2188 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pérez-Pacheco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Pacheco, A., Castañeda-Guzmán, R., Oliva Montes de Oca, C. et al. Phase transition of TiO2 thin films detected by the pulsed laser photoacoustic technique. Appl. Phys. A 102, 699–704 (2011). https://doi.org/10.1007/s00339-010-5961-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5961-0

Keywords

Navigation