Skip to main content
Log in

Burstein–Moss shift and room temperature near-band-edge luminescence in lithium-doped zinc oxide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanopowders of pure and lithium-doped semiconducting ZnO (Zn1−x Li x O, where x= 0, 0.01, 0.03, 0.06, 0.09 and 0.15 in atomic percent (at.%)) are prepared by PEG-assisted low-temperature hydrothermal method. The average crystallite size is calculated using Debye–Scherrer formula and corrected for strain-induced broadening by Williamson–Hall (W–H) plot. The peak shift in XRD and the lattice constant of ZnO as a function of unit cell composition are predicted by Vegard’s law. The evolution of ZnO nanostructures from rod-shaped to particle nature is observed from TEM images and the influence of dopant on the morphology is investigated. The optical absorption measurement marks an indication that the incorporation of lithium ion into the lattice of ZnO widens the optical band gap energy from ∼2.60 to ∼3.20 eV. The near band edge (NBE) emission peak centered at ∼3.10 eV is considered to be the dominant emission peak in the PL spectra. Blue emission peak is not observed in doped ZnO, thus promoting defect-free nanoparticles. The Burstein–Moss shift serves as a qualitative tool to analyze the widening of the optical band gap and to study the shape of the NBE luminescence in doped ZnO nanopowders. FT-IR spectra are used to identify the strong metal–oxide (Zn–O) interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yu, X.O. Yu, Environ. Sci. Technol. 42, 4902 (2008)

    Article  Google Scholar 

  2. Z. Fan, J.G. Lu, Int. J. High Speed Electron. Syst. 16, 883 (2006)

    Article  Google Scholar 

  3. O. Lupan, G. Chai, L. Chow, Microelectron. Eng. 85, 2220 (2008)

    Article  Google Scholar 

  4. E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. Lett. B 110, 16159 (2006)

    Google Scholar 

  5. B.S. Ong, C. Li, Y. Li, Y. Wu, R. Loutfy, J. Am. Chem. Soc. 129, 2750 (2007)

    Article  Google Scholar 

  6. R. Konenkamp, R. Word, C. Schlegel, Appl. Phys. Lett. 85, 6004 (2004)

    Article  ADS  Google Scholar 

  7. R.M. Nyffenegger, B. Craft, M. Shaaban, S. Gorer, G. Erley, R.M. Penner, Chem. Mater. 10, 1120 (1998)

    Article  Google Scholar 

  8. Z.L. Wang, J. Phys., Condens. Matter 16, R829 (2004)

    Article  ADS  Google Scholar 

  9. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  10. L. Schmidt-Mende, J.L. MacManus-Driscoll, Mater. Today 10, 40 (2007)

    Article  Google Scholar 

  11. S. Baruah, S. Dutta, J. Sci. Technol. Adv. Mater. 10, 013001 (2009)

    Article  Google Scholar 

  12. J.C. Johnson, H. Yan, P. Yang, R.J. Saykally, J. Phys. Chem. B 107, 8816 (2003)

    Article  Google Scholar 

  13. L.S. Hsu, C.S. Yeh, C.C. Kuo, B.R. Huang, S. Dhar, J. Optoelectron. Adv. Mater. 7, 3039 (2005)

    Google Scholar 

  14. G.D. Yuan, W.J. Zhang, J.S. Jie, X. Fan, J.A. Zapein, Y.H. Leung, L.B. Luo, P.F. Wang, C.S. Lee, S.T. Lee, Nano Lett. 8, 2591 (2008)

    Article  ADS  Google Scholar 

  15. Y. Miao, Z. Ye, W. Xu, F. Chen, X. Zhou, B. Zhao, L. Zhu, J.G. Lu, J. Appl. Surf. Sci. 252, 7953 (2006)

    Article  ADS  Google Scholar 

  16. T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi, Y. Hatanaka, Phys. Status Solidi B 229, 911 (2002)

    Article  ADS  Google Scholar 

  17. H.J. Xiang, J. Yang, J.G. Hou, Q. Zhu, Appl. Phys. Lett. 89, 223111 (2006)

    Article  ADS  Google Scholar 

  18. K. Ellmer, R. Mientus, Thin Solid Films 516, 4620 (2008)

    Article  ADS  Google Scholar 

  19. B. Yi, C.C. Lim, G.Z. Xing, H.M. Fan, L.H. Van, S.L. Huang, K.S. Yang, X.L. Huang, X.B. Qin, B.Y. Wang, T. Wu, L. Wang, H.T. Zhang, X.Y. Gao, T. Liu, A.T.S. Wee, Y.P. Feng, J. Ding, Phys. Rev. Lett. 104, 137201 (2010)

    Article  ADS  Google Scholar 

  20. W. Xie, Z. Yang, H. Chun, Ind. Eng. Chem. Res. 46, 7942 (2007)

    Article  Google Scholar 

  21. A.H. Salama, F.F. Hammad, J. Mater. Sci. Technol. 25, 314 (2009)

    Google Scholar 

  22. Q. Zhang, C.S. Dandeneau, S. Candelaria, D. Liu, B.B. Garcia, X. Zhou, Y.H. Jeong, G. Cao, Chem. Mater. 21, 4087 (2010)

    Google Scholar 

  23. R.N. Bhargava, D. Haranath, A. Mehta, J. Korean Phys. Soc. 53, 2847 (2008)

    Article  ADS  Google Scholar 

  24. M. Wu, L. Yao, W. Cai, G. Jiang, X. Li, Z. Yao, J. Mater. Sci. Technol. 20, 11 (2004)

    Article  Google Scholar 

  25. J. Wang, X.P. An, Q. Li, R.F. Egerton, Appl. Phys. Lett. 86, 201911 (2005)

    Article  ADS  Google Scholar 

  26. B.R. Bennett, R.A. Soref, A.D. Alamo, J. Quantum Electron. 26, 113 (1990)

    Article  ADS  Google Scholar 

  27. Y. Gu, I.L. Kuskovsky, M. Yin, S. O’Brien, G.F. Neumark, Appl. Phys. Lett. 85, 3833 (2004)

    Article  ADS  Google Scholar 

  28. A. Walsh, J.L.F. Da Silva, S.H. Wei, Phys. Rev. B 78, 075211 (2008)

    Article  ADS  Google Scholar 

  29. B. Saha, R. Thapa, K.K. Chattopadhyay, Solid State Commun. 145, 33 (2008)

    Article  ADS  Google Scholar 

  30. H.C. Hsu, C.Y. Wu, H.M. Cheng, W.F. Hsieh, Appl. Phys. Lett. 89, 013101 (2006)

    Article  ADS  Google Scholar 

  31. T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Appl. Phys. Lett. 85, 759 (2004)

    Article  ADS  Google Scholar 

  32. N.R. Yogamalar, R. Srinivasan, A. Chandra Bose, Opt. Mater. 31, 1570 (2009)

    Article  ADS  Google Scholar 

  33. H.L. Shi, Y. Duan, Eur. Phys. J. B 66, 439 (2008)

    Article  ADS  Google Scholar 

  34. V. Biju, S. Neena, V. Vrinda, S.L. Salini, J. Mater. Sci. 43, 1175 (2008)

    Article  ADS  Google Scholar 

  35. N.R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A. Chandra Bose, Solid State Commun. 149, 1919 (2009)

    Article  ADS  Google Scholar 

  36. L. Xiao-bo, S. Hong-Lie, Z. Hui, L. Bin-bin, Trans. Nonferr. Met. Soc. China 17, s814 (2007)

    Google Scholar 

  37. P.D.C. King, T.D. Veal, F. Fuchs, C.Y. Wang, D.J. Payne, A. Bourlange, H. Zhang, G.R. Bell, V. Cimalla, O. Ambacher, R.G. Egdell, F. Bechstedt, C.F. McConville, Phys. Rev. B 79, 205211 (2009)

    Article  ADS  Google Scholar 

  38. N.R. Yogamalar, S. Anitha, R. Srinivasan, A. Vinu, K. Ariga, A. Chandra Bose, J. Nanosci. Nanotechnol. 9, 5966 (2009)

    Article  Google Scholar 

  39. A. Thangaraja, V. Savitha, K. Jegatheesan, Int. J. Nanotechnol. Appl. 4, 31 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chandra Bose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yogamalar, N.R., Chandra Bose, A. Burstein–Moss shift and room temperature near-band-edge luminescence in lithium-doped zinc oxide. Appl. Phys. A 103, 33–42 (2011). https://doi.org/10.1007/s00339-011-6304-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6304-5

Keywords

Navigation